CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Graphs Cheatsheet
Depth First Search (DFS)

def dfs(G, s):
def explore_recursive(G, v):
visited(v) = true
previsit(v) # set the pre-order of v
for each edge (v, u) in E:
if not visited(u):
explore_recursive(G, u)
postvisit(v) # set the post-order of v

def explore_iterative(G, v):
st = stack()
st.push(v)

while st is not empty:
u = st.pop(Q)
visited(u) = true

for each edge (u, w) in E:
if not visited(w):
st.push(w)

depending on how you want to DFS, you can use
either explore_recursive or explore_iterative below
explore(G, s)
for all v in V:
if not visited(v):
explore(G, v)

— Runtime of DFS: O(|V| + |E|)

DF'S Tree/Forest: the tree/forest produced by the edges traversed
during a given DFS

Edge Types:
Tree Edge: leads to child; part of the DFS Tree/Forest

Forward Edge: leads to a non-child descendant

Back Edge: leads to an ancestor

Cross Fdge: leads to a node that’s neither a descendant nor an
ancestor

This content is protected and may not be shared, uploaded, or distributed.

DFS tree

1of 4

CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Edge Type based on Pre/Post-orders: an edge (u,v) € F is a:
e Tree or Forward Edge if pre(u) < pre(v) < post(v) < post(u)
e Back Edge if pre(v) < pre(u) < post(u) < post(v)

e Cross Edge if pre(v) < post(v) < pre(u) < post(u)

Topological Sort (Graph Linearization)

Returns the topological order of vertices in G (acyclic)
def topo_sort(G):
topo_order = []
def explore(G, v):
visited(v) = true
for each edge (v, u) in E:
if not visited(u):
explore(G, u)

topo_order.append(v) # note that topological order is reverse post-order!

s = any arbitrary node in G
explore(s)
for all v in V:
if not visited(v):
explore(G, v)

return topo_order[::-1]

Breadth First Search (BFS)

def bfs(G, s):
q = queue()
q.push(v)

while q is not empty:

v = q.pop()
visited(v) = true

for each edge (v, u) in E:
if not visited(u):
q.push(u)

— Runtime of BFS: O(|V| + |E|)

This content is protected and may not be shared, uploaded, or distributed.

20f 4

CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Strongly Connected Components

A strongly connected component of GG is a subset of vertices in which there is a path
from every vertex to every other vertex.

Kosaraju’s Algorithm
Given a graph G = (V, E), we can find all the SCCs as follows:

1. Run DFS on G™V to get the post-order values of all vertices v € V; i.e. we compute
post™¥(v) for all v € V.

2. Run DFS on G starting at the vertex with the highest post-order in G*V (that is un-
visited), which must belong in the sink SCC of G. Throughout this DFS, we label each
traversed vertex as part of the current SCC.

3. Repeat steps 2-3 until we’ve labeled all SCCs.
— Runtime of Kosaraju’s: O(|V| + |E|)

Dijkstra’s Algorithm

— Given a graph G with non-negative edge weights w(-), finds the shortest path lengths
from s to all vertices

def dijkstra(G, s):
for all v in V:
dist(v) = infinity # distances
par(v) = none # parents in shortest paths tree

dist(s) =0
h = min_heap() # priority according to distance
h.insert((s, 0))

while h is not empty:
v = h.delete_min()
for each edge (v, u) in E:
if dist(u) > dist(v) + w(v, u):
dist(u) = dist(v) + w(v, u)
par(u) = v
h.decrease_key(u) # sets priority of u to be the updated dist(u)

return dist, par

— Runtime of Dijkstra’s:
o O((|E]+ |V])log|V]) using a binary min-heap
o O(|E|+ |V|log|V]) using a fibonacci min-heap

This content is protected and may not be shared, uploaded, or distributed. 3of4

CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Bellman-Ford Algorithm

— Given a graph G (with possibly negative edge weights!), finds the shortest path lengths
from s to all vertices

def bellman_ford(G, s):
for all v in V:
dist(v) = infinity
par(v)

update all distances
dist(s) =0
repeat |V| - 1 times:
for each edge (v, u) in E:
if dist(u) > dist(v) + w(v, u):
dist(u) = dist(v) + w(v, w)
par(u) = v

negative-cycle detection by trying to update a |V|th time
for each edge (v, u) in E:
if dist(u) > dist(v) + w(v, u): # detected negative-cycle!
return None, None

return dist, par

— Runtime of Bellman-Ford: O(|V||E|).

This content is protected and may not be shared, uploaded, or distributed. 40f4

