
CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Graphs Cheatsheet

Depth First Search (DFS)

def dfs(G, s):

def explore_recursive(G, v):

visited(v) = true

previsit(v) # set the pre-order of v

for each edge (v, u) in E:

if not visited(u):

explore_recursive(G, u)

postvisit(v) # set the post-order of v

def explore_iterative(G, v):

st = stack()

st.push(v)

while st is not empty:

u = st.pop()

visited(u) = true

for each edge (u, w) in E:

if not visited(w):

st.push(w)

depending on how you want to DFS, you can use

either explore_recursive or explore_iterative below

explore(G, s)

for all v in V:

if not visited(v):

explore(G, v)

↪→ Runtime of DFS: O(|V |+ |E|)

DFS Tree/Forest: the tree/forest produced by the edges traversed
during a given DFS

Edge Types:

• Tree Edge: leads to child; part of the DFS Tree/Forest

• Forward Edge: leads to a non-child descendant

• Back Edge: leads to an ancestor

• Cross Edge: leads to a node that’s neither a descendant nor an
ancestor

This content is protected and may not be shared, uploaded, or distributed. 1 of 4

CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Edge Type based on Pre/Post-orders: an edge (u, v) ∈ E is a:

• Tree or Forward Edge if pre(u) < pre(v) < post(v) < post(u)

• Back Edge if pre(v) < pre(u) < post(u) < post(v)

• Cross Edge if pre(v) < post(v) < pre(u) < post(u)

Topological Sort (Graph Linearization)

Returns the topological order of vertices in G (acyclic)

def topo_sort(G):

topo_order = []

def explore(G, v):

visited(v) = true

for each edge (v, u) in E:

if not visited(u):

explore(G, u)

topo_order.append(v) # note that topological order is reverse post-order!

s = any arbitrary node in G

explore(s)

for all v in V:

if not visited(v):

explore(G, v)

return topo_order[::-1]

Breadth First Search (BFS)

def bfs(G, s):

q = queue()

q.push(v)

while q is not empty:

v = q.pop()

visited(v) = true

for each edge (v, u) in E:

if not visited(u):

q.push(u)

↪→ Runtime of BFS: O(|V |+ |E|)

This content is protected and may not be shared, uploaded, or distributed. 2 of 4

CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Strongly Connected Components

A strongly connected component of G is a subset of vertices in which there is a path
from every vertex to every other vertex.

Kosaraju’s Algorithm

Given a graph G = (V,E), we can find all the SCCs as follows:

1. Run DFS on Grev to get the post-order values of all vertices v ∈ V ; i.e. we compute
postrev(v) for all v ∈ V .

2. Run DFS on G starting at the vertex with the highest post-order in Grev (that is un-
visited), which must belong in the sink SCC of G. Throughout this DFS, we label each
traversed vertex as part of the current SCC.

3. Repeat steps 2-3 until we’ve labeled all SCCs.

↪→ Runtime of Kosaraju’s: O(|V |+ |E|)

Dijkstra’s Algorithm

↪→ Given a graph G with non-negative edge weights w(·), finds the shortest path lengths
from s to all vertices

def dijkstra(G, s):

for all v in V:

dist(v) = infinity # distances

par(v) = none # parents in shortest paths tree

dist(s) = 0

h = min_heap() # priority according to distance

h.insert((s, 0))

while h is not empty:

v = h.delete_min()

for each edge (v, u) in E:

if dist(u) > dist(v) + w(v, u):

dist(u) = dist(v) + w(v, u)

par(u) = v

h.decrease_key(u) # sets priority of u to be the updated dist(u)

return dist, par

↪→ Runtime of Dijkstra’s:

• O((|E|+ |V |) log |V |) using a binary min-heap

• O(|E|+ |V | log |V |) using a fibonacci min-heap

This content is protected and may not be shared, uploaded, or distributed. 3 of 4

CS 170, Fall 2024 Graphs Cheatsheet P. Raghavendra and S. Garg

Bellman-Ford Algorithm

↪→ Given a graph G (with possibly negative edge weights!), finds the shortest path lengths
from s to all vertices

def bellman_ford(G, s):

for all v in V:

dist(v) = infinity

par(v)

update all distances

dist(s) = 0

repeat |V| - 1 times:

for each edge (v, u) in E:

if dist(u) > dist(v) + w(v, u):

dist(u) = dist(v) + w(v, u)

par(u) = v

negative-cycle detection by trying to update a |V|th time

for each edge (v, u) in E:

if dist(u) > dist(v) + w(v, u): # detected negative-cycle!

return None, None

return dist, par

↪→ Runtime of Bellman-Ford: O(|V ||E|).

This content is protected and may not be shared, uploaded, or distributed. 4 of 4

