v V. V V

(Slides for CS838: Topics in parallel computing, CS1221, Tue, May 4, 1999, 8:00-9:15 a.m., Pavel Tvrdik)

Section #26: Parallel tree contraction
lTree contractionl

Divide& Conquer: parallel splitting of trees into approx. equal subtrees difficult

bottom-up: local modifications of the tree by removing leaves

l Rake and Compress I

Rake: removing leaves. But: tends to linearize trees = linear parallel time

Compress: reduces chains using pointer jumping
Compress and Rake can be applied in parallel to disjoint parts of a tree.

Compress produces leaves for Rake and Rake produces linear lists for Compress.

RN

Rake Compress

|Basic Contract: CREW PRAM algorithm for generic parallel tree contractionl

T=(V,E),|V|=n

Input: P|l,...,n]; /* Plz]is a pointer to the parent of = */
children[l,... ,n|; /* children|v] = {vi,..., v} — pointers to all children */
index|1,... n|; /* index|v;] = i — each child v knows its index in children|Pv]] */

Auxil: labelll,... n]; /* labellv) ={f1,..., fr}, where f; € {U M} */
/* fi = M = marked iff a child supplied its value to its parent */
UnMarkChil(x) returns int; /* function returning the # of unmarked children */

Output: the value accumulated in the root

/* initialize the data structures */

for all nodes v € T do_in_parallel initialize(v);

while UnMarkChil(root) > 0 do

{ for all nodes v € T' do_in parallel
if Plv] # nil then
{ case UnMarkChil|v] of
0: { Rake(v); label| Pv]|[index|v]] := M; Plv] :==nil; }
1. if UnMarkChil|Plv]] = 1 then { Compress(v); Plv] := P|Pv]]; }
endcase }};
Rake(root);

l Complexity l

Theorem 1 After O(log,/3n) applications of Basic Contract to n-node tree T, it is

reduced to a root. If Rake and Compress take O(1) time, then the parallel time with
p=0(n) is O(logn).

lBinary expression tree evaluationl

> internal nodes represent binary operators 4+ and X

> leaves contain constant input integer values.

(d) (€)

l Compress l

l The algorithml

Input: P|1,...,n|; /* Plz]is a pointer to the parent of = */
val|l, ..., n]; /* vallv] — value in v after its subtree is evaluated */
op|l,...,n]; /* op|v] is the operator of an internal node v */

sidell, ..., n]; /* sidelv] € {L, R} */
Auxil: (a,b)|1,...,n]; /* alv] and bjv] are labels of edge (v, P|v]) */
contr(l,...,n|[L, R] /* auxiliary array to store contributions from children */
UnMarkChil(z) returns int; /* function returning the # of unmarked children */
Output: the value of the expression tree stored in the root

5

/* initialize the data structures */
for all nodes v € T' do_in_parallel /* initialize(v) */
if UnMarkChil(v) =0 /* leaves */
then {contr|P|v]||side|v]] .= vallv]; Plv] :=nil; }
else (a,b)|v| .= (1,0); /* internal nodes */
while UnMarkChil(root) > 0 do
{ for all nodes v € T' do_in_parallel
if Plv] # nil then
{ case UnMarkChil|v] of
0: { wallv] := eval(op|v], contr|v]|[L], contr|v]|R]); /* Rake(v) */
contr|Pv]||stde|v]] ;== a|v|val|v] 4+ blv]; Plv] :=nil; } /* Mark */
1. if UnMarkChil|Plv]] = 1 then /* Compress(v) */
{ (a,b)v] = simplify((a,b)v], (a,b)| Plv]], op| P|v]|, contr| P|v]||side_sibl|v]]);
P[] = P[P[]) }
endcase }};
val|root] := eval(op|root], contr|root|| L], contr|root||R]);

l Drawbacks l

> Basic Contract is not work-optimal.
e W(n,p) =nlogn (in contrast to SU(n) = O(n))

e Reason: except essential chains, needed for the result

Compress produces also nonessential chains

e tree = linked list == the same problem as list ranking using pointer jumping

> It requires CREW PRAM

lSolution = Shunt operationl

Shunt(v) = Rake(v) + Compress(sibling|v]).

lParallel Shunt constraintsl

> Shunt is not defined for children of the root
Compress cannot be applied to the root.
> Shunt cannot be performed on two siblings simultaneously.

Concurrent-Write PRAM and nondeterminism

> Shunt cannot be applied in parallel to 2 adjacent leaves in left-to-right
ordering.

disconnected tree

:>g@/,
®

/

/

/
i+

l Solution? l

apply Shunt to odd-numbered leaves first and to even-numbered leaves then.

> Shunt cannot be applied to consecutive left and right odd-numbered
leaves.

disconnected tree + nondeterminism + Concurrent-Write

10

lLeft-Right numbering of leavesl

Input: FA[1,... m)];
Auxiliary: IsLeaf[1,...,n|; /* flags identifying leaves */
Output: LR Numbering|l,..., n|;

for all nodes v € T' do_in_parallel
IsLeaf|v] :=0;
for all arcs xy € EA’ do_in_parallel
if rank|xy|] = ranklyx] + 1
then {Weight|xy| := 1; IsLeafly| := 1} else Weight|xy| := 0;
apply Parallel Scan on Weight|1,...,m|;
for all arcs 2y € EA’ do_in_parallel
if rank|xy] = ranklyx] + 1
then LR_Numberingly| := Weight|zy|] — 1 else LR_Numbering|y] :=0

11

lGeneric Shunt Contract algorithm for binary treesl

Input: FEA[1,...,m]; /* Euler array */

P[1,...,n|; /* Plx] is a pointer to the parent of x */

sidell,...,n|; /* sidelv] € {L, R} */

sibling[l,...,nl|; /* sibling|v] points to the other child of Plv] */
Auxil: IsLeaf|l,...,n|; /* flags identifying leaves */

active[l, ..., n]; /* flags keeping track of nodes still in game */

LR numbering|l,...,n|; /* Left-to-right numbering of leaves +/
Output: the value of the reduced tree stored in the root

Procedure Shunt(v : node);
{ Rake(v); active|v]| := 0; active|Plv]] := 0;
Compress(sibling|v]); P|sibling|v]] := P|Pv]]; }

12

/* initialize the data structures */
for all nodes v € T' do_in_parallel /* initialize(v); */
call LR numbering(7T);
for all nodes v € T' do_in_parallel
if IsLeaf|v] then active|v] := 1 else active|v]| := 0;
repeat logn times
for all nodes v € T' do_in_parallel
if (v # root and active|v)
if (Is Odd(LR_Numbering|v]) and Plv| # root)
then { if (side[v]| = L) then Shunt(v);
if (side|v| = R) then Shunt(v) };
else LR Numbering|v] := LR_Numbering|v]/2;
Rake(root);

13

l Performance l

Theorem 2 Shunt Contract runs correctly on EREW PRAM.

Proof. Let vy and v9 be two nonconsecutive left leaves of T'. Then Plv;] # Plvg| and
Plv{| # P|Pvs]]. It follows from the definition of Shunt that no collision can appear. _

Theorem 3 If p = ©(n/logn), then T'(n,p) = O(Tghynt logn).

Proof. Assign logn /2 leaves to each processor. One application of Shunt Contract eliminates
one half of current leaves, so that the total number of parallel Shunt operations is at most

logn/2+logn/4+ - +logn/(210glogn) +14+---+1<2logn.

14

lShunt in an expression tree.l

a((ax+h)op (aval +b)+h

15

lBinary expression tree evaluation using Shuntl

16

