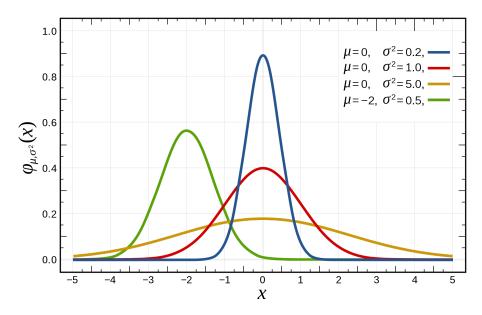


CS1951A: Data Science

Lecture 9: Hypothesis testing

Lorenzo De Stefani Spring 2022


Outline

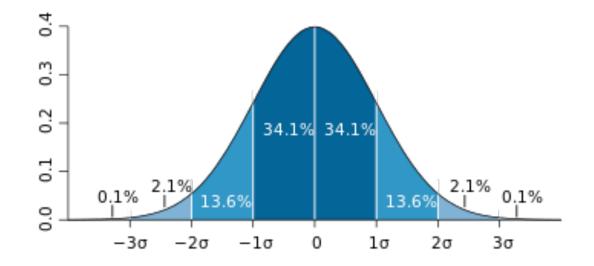
- Normal distribution and the central limit theorem
- Testable hypotheses
- A blueprint for the hypothesis testing method
- Testing the fairness of a coin
- P-value and rejection zone
- One side vs two sided hypotheses
- Choosing the correct statistical test
- T-test
- Chi-squared test

Normal or Gaussian Distribution

- Continuous distribution for real-valued random variables of great importance
- Two parameters $X \sim N(\mu, \sigma)$
 - $-\mu$ expected value

 $-\sigma$ standard deviation

CS1951A - Data Science - Spring'22 - Lorenzo De Stefani


Normal or Gaussian Distribution

- Used to represent many statistical phenomena
 - White noise is normally distributed with mean 0
 - A Normal distribution with $\mu = 0, \sigma = 1$ is called standard normal distribution
- The pmf of a Normal Distribution is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

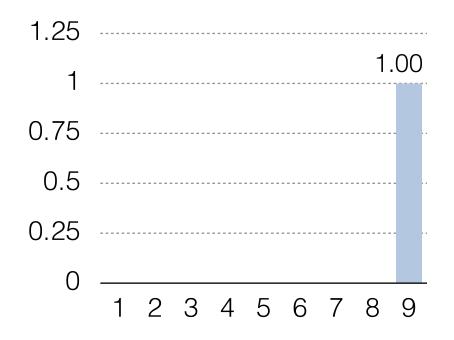
- The cmf quite complex to compute!
 - We generally use tables

Normal or Gaussian Distribution

- The values less than one standard deviation away from the mean account for 68.27% of the set
- Within two standard deviations from the mean account for 95.45%
- Within three standard deviations account for 99.73%.

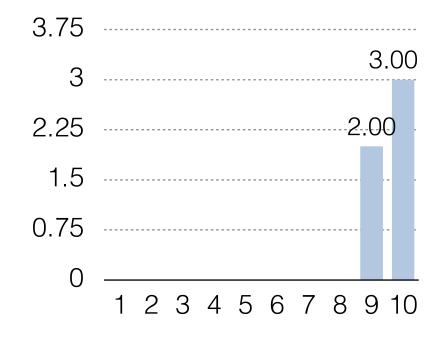
Law of large numbers: informal statement

• If we repeat the same experiment a large number of times, the average of the outcomes $\overline{X_n}$ (sample average) will converge to the expected value

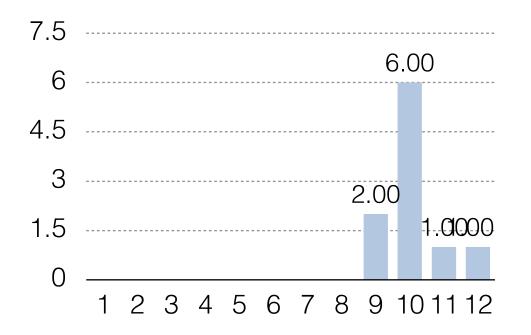

$$\overline{X_n} = \frac{1}{n} \sum X_i$$
$$\overline{X_n} \to_{n \to \infty} E[X_n] = E[X_i] = \mu$$

 This holds under the assumption that the repetitions X_i are independent and have the same expected value

The distribution of the sample average $\overline{X_n}$ of n independent and identically distributed samples from a distribution with expected value μ and finite variance σ^2 converges to a normal distribution with expected value μ and variance σ^2/n as $n \to \infty$


- More precisely $\sqrt{n(\overline{X_n} \mu)}$ approximates $N(0, \sigma^2)$ regardless of the distribution of the samples
- It implies that probabilistic and <u>statistical</u> methods that work for normal distributions can be applied also to many problems involving other types of distributions.

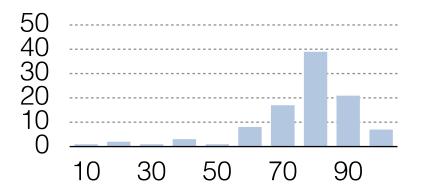
- Let X be the number of heads obtained when flipping a fair coin 12 times.
- This is binomial random variable with expected value $0.5 \times 12 = 6$

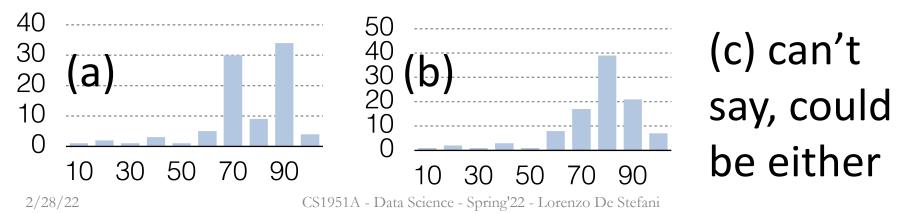


CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

- Let X be the number of heads obtained when flipping a fair coin 12 times.
- This is binomial random variable with expected value $0.5 \times 12 = 6$

- Let X be the number of heads obtained when flipping a fair coin 12 times.
- This is binomial random variable with expected value $0.5 \times 12 = 6$


- Let X be the number of heads obtained when flipping a fair coin 12 times.
- This is binomial random variable with expected value $0.5 \times 12 = 6$


Normal distribution and testing

- Testing statistics of interest are often normally distributed
- We can apply statistical methods designed for normal distributions even when underlying distribution is not normal
- We can do so if the statistic converges to the normal distribution as $n \rightarrow \infty$

Every year, I compute the mean grade in my class. I never change the material or my methods for evaluating. Over the 439 (③) years that I have been teaching this class, this has resulted in the below distribution.

Which of these is mostly like the typical distribution on any given year?

Null vs. alternative hypothesis

The FDA or "science" needs to decide on a new theory, drug, treatment...

- H₀: The null hypothesis the current theory, drug, treatment, is as good or better
- H_a: The alternative hypothesis the new theory, drug, treatment, should replace the old one

Researchers do not know which hypothesis is true. They must make a decision on the basis of evidence presented.

What is a (testable) hypothesis?

- A hypothesis is a claim (assumption) about a population parameter:
 - population mean

Example: The mean monthly cell phone bill of this city is $\mu = 42

– population proportion

Example: The proportion of adults in this city with cell phones is p = .68

The null hypothesis, H₀

States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S. Homes is equal to three (H_0 : $\mu = 3$)

Is always about a population parameter, not about a sample statistic

$$H_0: \mu = 3$$
 $H_0: X = 3$

The blueprint

- Formulate alternative hypothesis H_a
- Analyze null hypothesis H₀
- Set up experiment
 - Select an appropriate statistical test and a test statistic
 - Come up with a priori theoretical distribution for the test statistic
 - This is often already given in the definition of the statistical test and H_0
 - Select a threshold $0 \le \alpha \le 1$ value for "how surprising" (i.e., how unlikely) under the current assumption H0 the observed data should be in order to decide to reject the null
 - α will denote the level of confidence of the decision
 - If the threshold is used to state the level of confidence which whom we want to decide on rejection
- Acquire data
- Compute the likelihood of observing the test statistic under the null hypothesis

– p-values!

• Compare the computed value with α and decide if it is possible to reject the null hypothesis

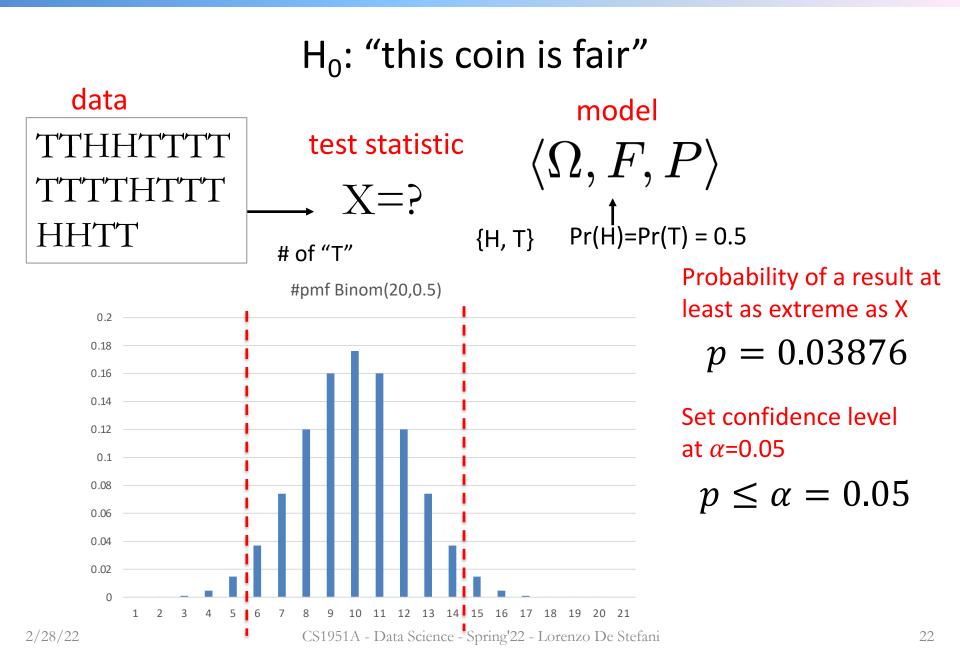
Careful with your terminology!

- Just because we reject a null hypothesis it does not mean we are proving it not to be correct
 - We are merely saying that, given the data, it is unlikely to be correct
 - We can fix the level of confidence of this kind of statement
- Rejecting a null does not imply that the alternative is "correct"
 - Just we cannot exclude it!
 - Avoid the terminology "accepting the alternative"

Example: testing the fairness of a coin

H₁: "this coin is biased" H₀: "this coin is fair"

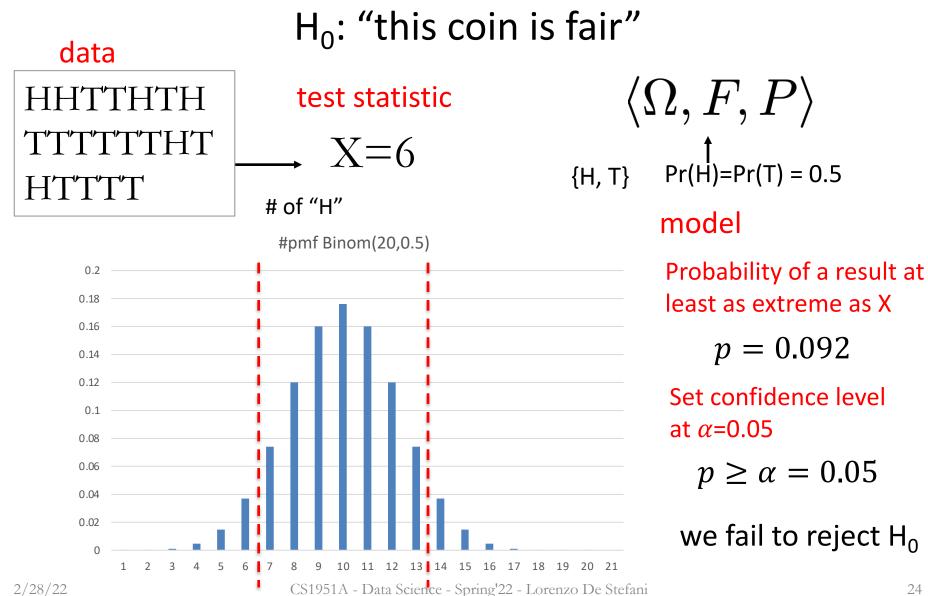
Testing procedure


- We flip the coin 20 times independently and with the same distribution
- We count the number of heads called X
 - The "test statistic"
- We compute the probability *p* of observing a result at least as extreme as X assuming the null hypothesis is correct ("under the null hypothesis")
 - the p-value
- We set a threshold $0 \le \alpha \le 1$ such that if the null hypothesis is rejected if $p \le \alpha$
 - The desired confidence level

The testing procedure, including the number of samples, type of statistical test and threshold need to be fixed before obtaining the data!!

Level of significance α

- How confident do you want to be?
- Many terminologies: Critical level/control level/critical threshold...
- Example: Significance level of 0.05
 - 5% of the time we will observe higher mean by chance
 - 95% of the time the higher mean will be real
- α bounds the likelihood of making wrong decisions
 - 5% of the time we will reject a correct null by chance


The test

The blueprint: example

The blueprint: example

One tailed and two tailed tests

One-tailed tests

• Based on a unidirectional hypothesis

Example: The average height of an adult in 2010 is higher than 6 feet

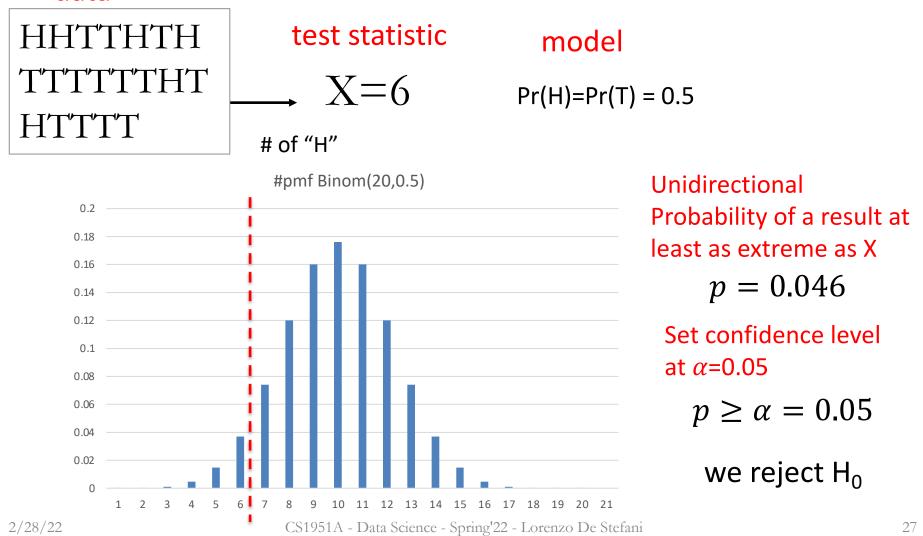
Two-tailed tests

• Based on a bidirectional hypothesis

Example: The average height of an adult in 2010 different from 6 feet

A slightly different question

H₁: "this coin is biased towards heads" H₀: "this coin is not biased towards head"


Testing procedure

- We flip the coin 20 times independently and uniformly at random
- We count the number of hears called X
- We compute the probability p of a result at least as extreme as X under the null hypotheses
 - the p-value
- We set a threshold $0 \le \alpha \le 1$ such that if the null hypothesis is rejected if $p \le a$

The testing procedure, including the number of samples, typo of statistical test and threshold need to be fixed before actually obtaining the data!!


A slightly different question

H₀: "this coin is not biased towards head" data

A slightly different question

H_0 : "this coin is not biased towards head" data

p-value

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - -Also called observed level of significance
 - -Function of the data takes values in [0,1]

Uniform random variable

• A discrete random variable X which takes values in $\{x_1, x_2, ..., x_m\}$ is uniform if

$$\forall x_i \in \{x_1, x_2, \dots, x_m\}, \Pr(X = x_i) = \frac{1}{|\{x_1, x_2, \dots, x_m\}|}$$
$$E[X] = ?$$

• A continuous random variable X in the interval [a,b], denoted as U(a, b), is such that given $c \in [a, b]$ $Pr(X \le c) = \frac{c-a}{b-a}$ - E[X] =?

Another view of p-value

- As n → ∞, the p-value p is a random variable whose pmf is uniform in [0,1] if the nullhypothesis is correct
- Assume we set $\alpha = 0.05$:

 $-\Pr(p \le 0.05) = 0.05!$

One sample vs two samples test

• One sample tests:

- We have observations (samples) from one population, we want to compare them with a fixed model or distribution
- E.g., this distribution as mean μ
- Two samples tests:
 - We have observations (samples) from two populations
 - We want to compare statistical properties of the two populations through the observations
 - E.g., these two distributions are the same, they have the same average,

Many important test have both versions

Select your test

- Testing is a bit like finding the right recipe based on these ingredients:
 - Type of hypothesis
 - Data type
 - Sample size
 - Variance known? Variance of several groups equal?
- Good news: Plenty of tables available, e.g.,
 - <u>http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.</u>
 <u>htm</u> (with examples in R, SAS, Stata, SPSS)
 - <u>http://sites.stat.psu.edu/~ajw13/stat500_su_res/notes/les</u> <u>son14/images/summary_table.pdf</u>

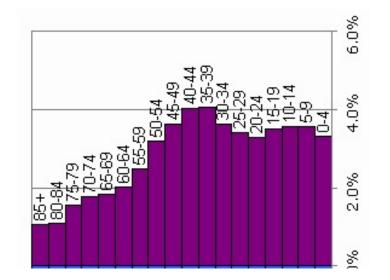
Select your test

Population

Example of a table of tests

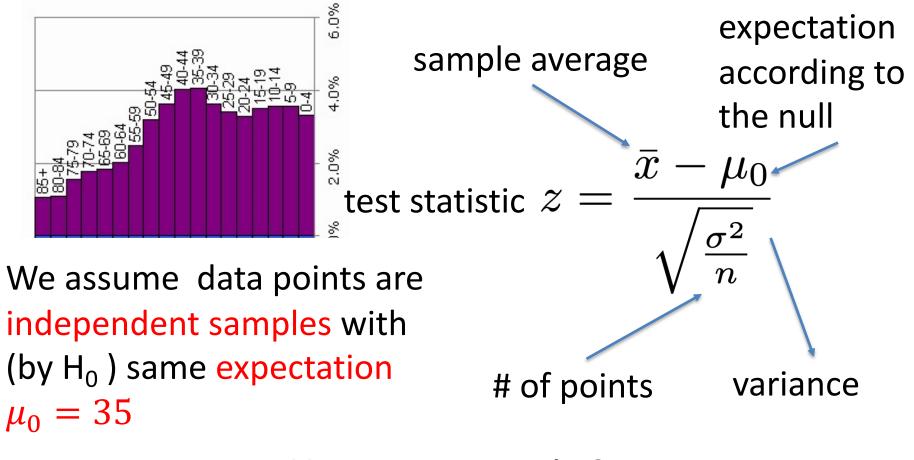
Summary Table for Statistical Techniques

	Inference	Parameter	Statistic	Type of Data	Examples	Analysis	Minitab Command	Conditions
1	Estimating a Mean	One Population Mean µ	Sample mean	Numerical	 What is the average weight of adults? What is the average cholesterol level of adult females? 	1-sample t-interval $\overline{y} \pm t_{\alpha'^2} \frac{s}{\sqrt{n}}$	Stat >Basic statistics >1-sample t	 data approximately normal or have a large sample size (n ≥ 30)
2	Test about a Mean	One Population Mean μ	Sample mean	Numerical	 Is the average GPA of juniors at Penn State higher than 3.0? Is the average Winter temperature in State College less than 42° F? 	$\begin{split} H_o: \mu &= \mu_o \\ H_a: \mu &= \mu_o \text{ or } H_a: \mu &> \mu_o \\ \text{ or } H_a: \mu &< \mu_o \\ \text{ The one sample t test:} \\ t &= \frac{\overline{y} - \mu_o}{\frac{s}{\sqrt{n}}} \end{split}$	Stat >Basic statistics >1-sample t	 data approximately normal or have a large sample size (n ≥ 30)
3	Estimating a Proportion	One Population Proportion π	Sample Proportion $\hat{\pi}$	Categorical (Binary)	 What is the proportion of males in the world? What is the proportion of students that smoke? 	1-proportion Z-interval $\hat{\pi} \pm z_{\alpha^2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$	Stat >Basic statistics >1-sample proportion	 have at least 5 in each category
4	Test about a Proportion	One Population Proportion π	Sample Proportion π	Categorical (Binary)	 Is the proportion of females different from 0.5? Is the proportion of students who fail Stat 500 less than 0.1? 	$H_{o}: \pi = \pi_{o}$ $H_{a}: \pi \neq \pi_{o} \text{ or } H_{a}: \pi > \pi_{o}$ or $H_{a}: \pi < \pi_{o}$ The one proportion Z-test: $z = \frac{\hat{\pi} - \pi_{0}}{\sqrt{\frac{\pi_{0}(1 - \pi_{0})}{n}}}$	Stat >Basic statistics >1-sample proportion	• $n \pi_o \ge 5$ and $n (1-\pi_o) \ge 5$

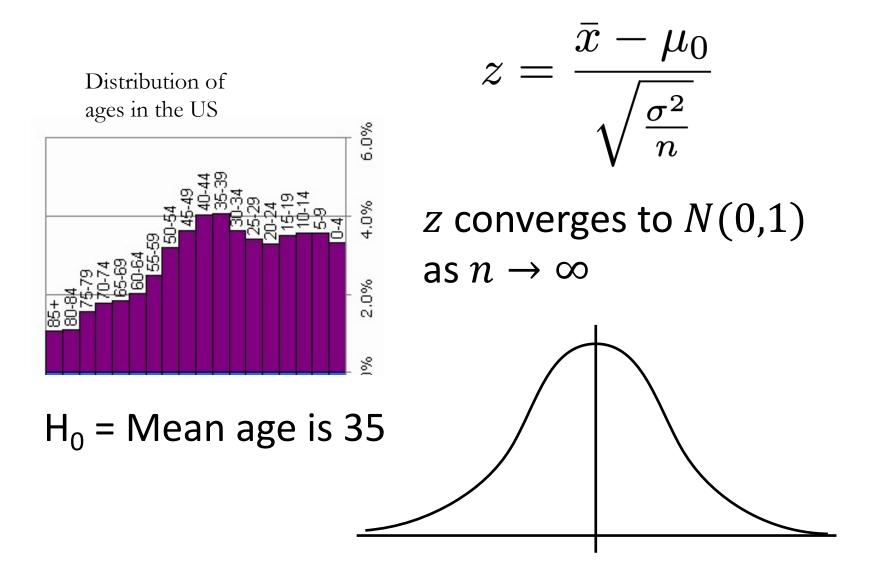

http://sites.stat.psu.edu/~ajw13/stat500_su_res/notes/lesson14/images/summary_table.pdf

CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

Some tests you are likely to use


- **t-test**: difference of means; is the average value of some feature different between two populations
 - e.g., Are men taller than women? Are blue states more populated than red states? Do CS students work harder than other majors?
- **chi-squared** X²**-test**: difference in frequencies of a categorical variable; is the distribution of some feature uniform across groups
 - Used to compare distributions of discrete random variables: for continuous ones is better to use Kolmogorov-Smirnoff test
 - e.g. Do neighborhoods differ in terms of music preferences? Do college majors differ in terms of sociodemographic features?

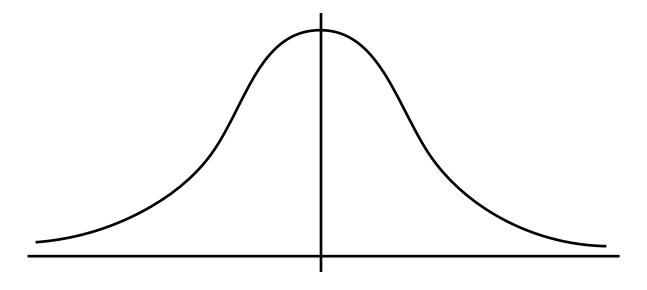
t-test: example on population means



Distribution of ages in the US

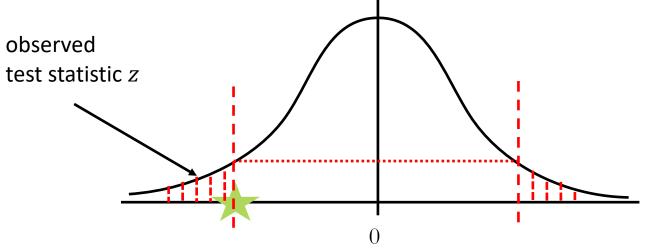
H_a = Mean age is not 35 H_0 = Mean age is 35

H_0 = Mean age is 35


Why can we use a normally-distributed test statistic to evaluate mean age of a population?

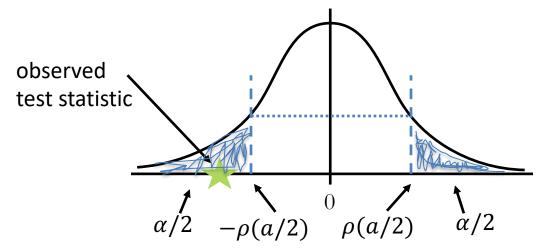
- a) Because ages are normally distributed
- b) Because the test statistic is a random variable
- c) Because of the law of large numbers
- d) Because of the central limit theorem
- e) The limit does not exist!

•
$$z = \frac{\bar{X} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}} = \sqrt{n} \frac{\bar{X} - \mu_0}{s}$$


distance from mean in std units

• the pmf of z is
$$\rho(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$

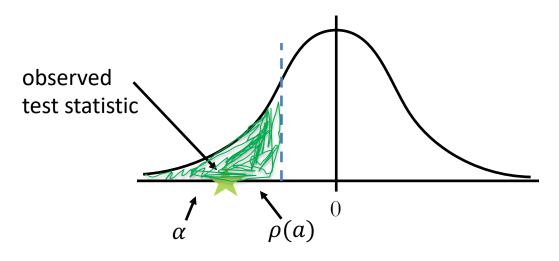
• *z* is the test statistic not the p-value


- the p-value is the likelihood of observing a phenomenon at least as extreme as the one reported by the test statistic assuming null hypothesis is correct
 - In the example assuming we have a two-tailed test

- The red shaded area is the p-value
- How do we compute it? We use tables ⁽²⁾
- p-value is then compared with threshold α
 - if $p val \le \alpha$ reject H_0
 - otherwise fail to reject H_0

	t Table		~	2	22								
	cum. prob one-tail	t _{.50} 0.50	t _{.75} 0.25	t _{.80} 0.20	t _{.85} 0.15	t _{.90} 0.10	t _{.95} 0.05	t _{.975} 0.025	t _{.99} 0.01	t.995 0.005	t _{.999} 0.001	t _{.9995}	
	two-tails	1.00	0.50	0.20	0.15	0.20	0.05	0.025	0.01	0.003	0.002	0.0003	
	df	1.00	0.00	0.40	0.00	0.20	0.10	0.00	0.02		0.002	0.001	
	1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63 <mark>.</mark> 66	318.31	636.62	
	2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599	
	3	0.000 0.000	0.765 0.741	0.978 0.941	1.250 1.190	1.638 1.533	2.353 2.132	3.182 2.776	4.541 3.747	5.841 4.604	10.215 7.173	12.924 8.610	p-vau
degrees of	5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869	1
acgrees of	6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
freedom	7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
rreedom	8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041	
	9	0.000 0.000	0.703 0.700	0.883 0.879	1.100	1.383 1.372	1.833 1.812	2.262 2.228	2.821 2.764	3.250 3.169	4.297 4.144	4.781 4.587	
<i>n</i> −1 <	11	0.000	0.697	0.876	1.088	1.363	1.796	2.220	2.718	3.109	4.025	4.437	
	12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
	13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
	14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
	15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
	16 17	0.000 0.000	0.690 0.689	0.865 0.863	1.071 1.069	1.337 1.333	1.746 1.740	2.120 2.110	2.583 2.567	2.921 2.898	3.686 3.646	4.015 3.965	
	18	0.000	0.688	0.862	1.069	1.333	1.740	2.110	2.557	2.878	3.640	3.965	
	19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
	20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
	21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819	
	22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
	23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768	
	24 25	0.000 0.000	0.685 0.684	0.857 0.856	1.059 1.058	1.318 1.316	1.711 1.708	2.064 2.060	2.492 2.485	2.797 2.787	3.467 3.450	3.745 3.725	
	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.403	2.779	3.435	3.707	
	27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690	
	28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674	
	29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659	
	30 40	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646	
	60	0.000	0.681 0.679	0.851 0.848	1.050 1.045	1.303 1.296	1.684 1.671	2.021 2.000	2.423 2.390	2.704 2.660	3.307 3.232	3.551 3.460	
	80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416	
	100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390	
	1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300	
	z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291	
	F	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%	
						Config	lence Le	evel					

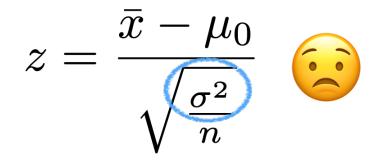
• alternatively given the threshold α , we can compute the boundaries for the rejection zone


- Two tailed test α area of the two tails
- $\rho\left(\frac{a}{2}\right)$ computed using the corresponding table
- We use use $\rho(a/2)$ as criterion
 - $|z| \ge \rho(a/2)$ reject H_0
 - otherwise fail to reject

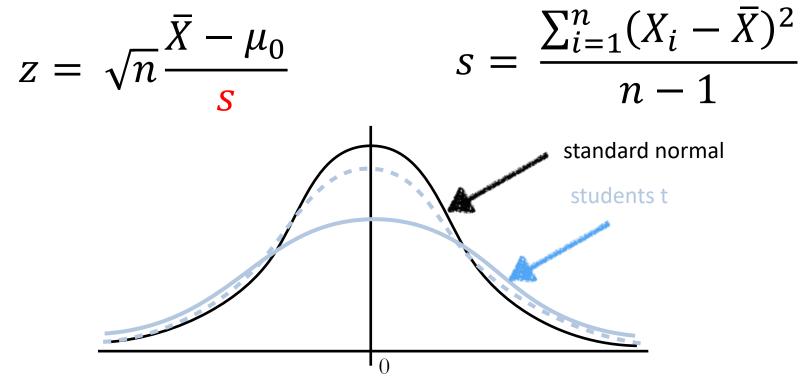
	t Table											
	cum. prob	t .50	t .75	t .80	t.85	t.90	t .95	t .975	t .99	t .995	t .999	t.9995
	one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
	two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
	df											
	1	0.000	1.000	1.376	1.963	3.078	6.314	12 <mark>7</mark> 1	31.82	63.66	318 31	636.62
	2	0.000	0.816	1.061	1.386	1.886	2.920	4.3 <mark>0</mark> 3	6.965	9.925	22.327	31.599
	3	0.000	0.765	0.978	1.250	1.638	2.353	3.1 <mark>8</mark> 2	4.541	5.841	10.215	12.924
dograac of	4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
degrees of freedom	5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
0	6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
froodom	7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
neeuom	8	0.000	0.706	0.889	1.108	1.397	1.860	2.506	2.896	3.355	4.501	5.041
	9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
<i>n</i> −1 <	10 11	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764 2.718	3.169	4.144	4.587
n - 1	11	0.000 0.000	0.697 0.695	0.876 0.873	1.088 1.083	1.363 1.356	1.796 1.782	2.201 2.179	2.681	3.106 3.055	4.025 3.930	4.437 4.318
	12	0.000	0.695	0.873	1.003	1.350	1.762	2.179	2.650	3.055	3.852	4.318
	13	0.000	0.694	0.868	1.079	1.345	1.761	2.160	2.630	2.977	3.787	4.221
	15	0.000	0.691	0.866	1.074	1.341	1.753	2.145	2.6024	2.947	3.733	4.073
	16	0.000	0.690	0.865	1.074	1.337	1.746	2.120	2.583	2.947	3.686	4.075
	17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
	100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
	1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
	z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	L	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
						Confid	dence Le	evel				

α

t-test – one tailed test


- H_a = "the average age is less than 35 "
- computation of test statistic does not change

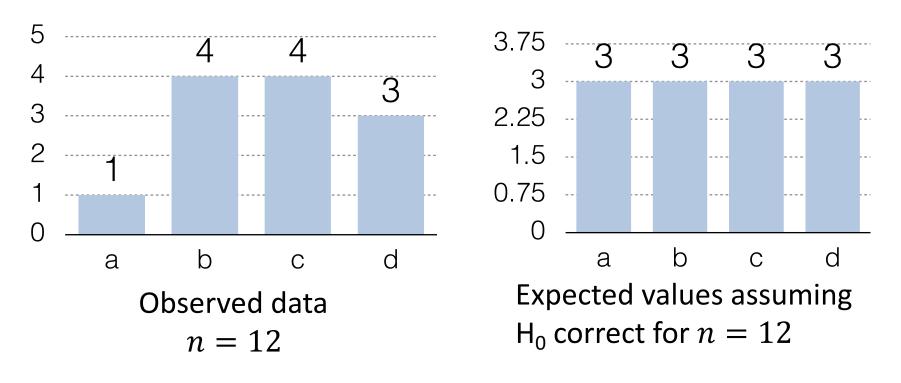
 The change impacts evaluation of the p-value or evaluation of ρ(a)


	t Table											
	cum. prob	t .50	t.75	t .80	t .85	t _{.90}	t .95	t .975	t .99	t .995	t .999	t .9995
	one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
	two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
	df											
	1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
	2	0.000	0.816 0.765	1.061 0.978	1.386 1.250	1.886 1.638	2.920 2.353	4.303 3.182	6.965 4.541	9. <mark>9</mark> 25 5.841	22.327 10.215	31.599 12.924
	4	0.000	0.765	0.978	1.250	1.533	2.353	2.776	3.747	4.604	7.173	8.610
degrees of	5	0.000	0.741	0.941	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
ucgices of	6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
freedom	8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
needom	9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
1	10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
<i>n</i> −1 <	11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20 21	0.000	0.687 0.686	0.860 0.859	1.064	1.325 1.323	1.725 1.721	2.086 2.080	2.528	2.845	3.552	3.850
	21	0.000	0.686	0.858	1.063 1.061	1.323	1.721	2.080	2.518 2.508	2.831 2.819	3.527 3.505	3.819 3.792
	22	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
	100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
	1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
	Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	F	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
						Config	lence Le	evel				

What looks suspicious?

- Generally we do not know the value σ
- We need to replace it with something that can be evaluated from the data

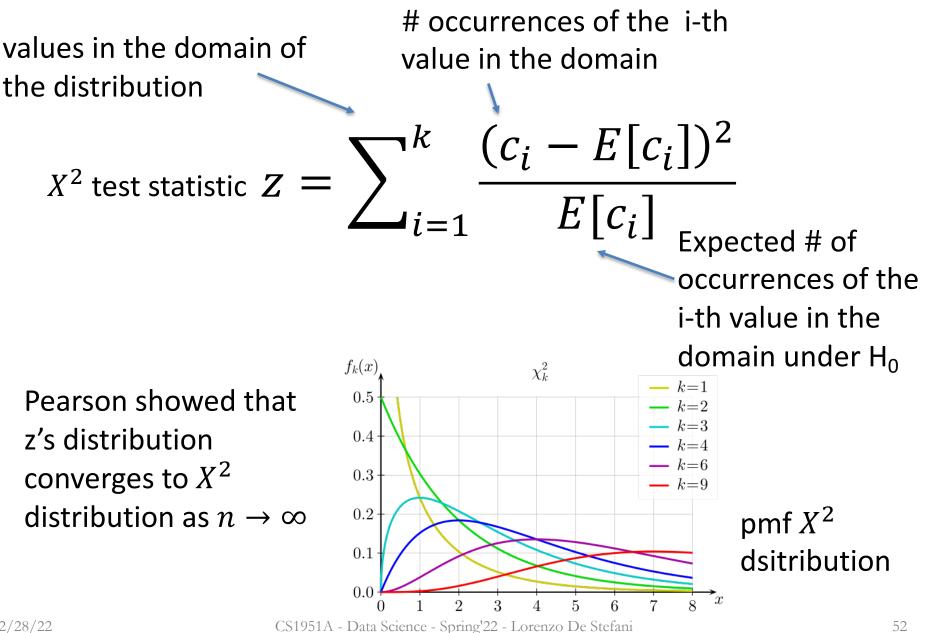
Using empirical standard deviation



- Students' t distribution converges to the standard normal ad n increases
 - Central limit theorem!
- In general, good convergence for $n \geq 30$

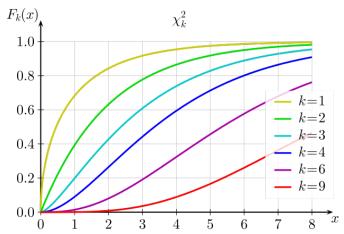
Some tests you are likely to use

- **t-test**: difference of means; is the average value of some feature different between two populations
 - e.g. are men taller than women, are blue states more populated than red states, do CS work harder than other majors
- chi-squared test: difference in frequencies of a categorical variable; is the distribution of some feature uniform across groups
 - e.g. do neighborhoods differ in terms of music preferences features; do college majors differ in terms of sociodemographic features
 - Used to compare distributions of discrete random variables: for continuous ones is better to use Kolmogorov-Smirnoff test


Are the answers to driving licence test random?

H_0 = all answers are equally likely

I can reframe the question as: is the observed discrete distribution the same as one which uniform over the same values (i.e., the domain)


The X^2 test statistic

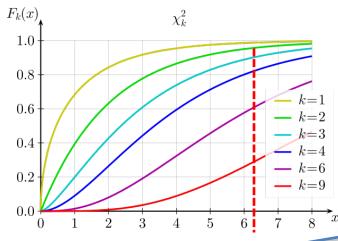
⁵²

Chi Squared Test

- Compute test statistic $z = \sum_{i=1}^{k} \frac{(c_i E[c_i])^2}{E[c_i]}$
- We compute the p-value using the cdf of the Chi-squared distribution

• We use tables!

Chi Squared Test


Degrees of freedom are the values that the discrete distribution being observed can assume +1

Degrees of -	Chi-Square (χ^2) Distribution Area to the Right of Critical Value												
Freedom	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01					
1 2	0.020	$0.001 \\ 0.051$	0.004 0.103	0.016 0.211	2.706 4.605	3.841 5.991	5.024 7.378	6.635 9.210					
3 4	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345					
	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277					
5	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086					
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812					
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475					
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090					
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666					
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209					
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725					
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217					
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688					
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141					
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578					
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000					
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409					
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805					
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191					
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566					
21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932					
22	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289					
23	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638					
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980					
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314					
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642					
27	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963					
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278					
29	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588					
30	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892					

CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

Chi Squared Test

- Compute test statistic $z = \sum_{i=1}^{k} \frac{(c_i E[c_i])^2}{E[c_i]}$
- We compute the p-value using the cdf of the Chi-squared distribution

for $\alpha = 0.2$ threshold $\phi(\alpha)$ rejection region to the right

- We use tables!
- For a given significance level α we have a corresponding rejection region
- if $z \ge \phi(\alpha)$ reject null hypothesis with confidence α

Add this to your calendar

Featured Event

Causality in Data Science \rightarrow

Featuring

2021 Nobel Prize in Economics Winner Guido Imbens '91 Ph.D.

The Applied Econometrics Professor and Professor of Economics Graduate School of Business, Stanford University

Wednesday, March 2, 2022 | 5 p.m.

Salomon Center for Teaching, De Ciccio Auditorium, Room 101 79 Waterman Street

A conversation moderated by Provost Richard M. Locke, Schreiber Family Professor of Political Science and International and Public Affairs, will follow the talk.

Speaker Biography

Register Now

