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Announcements

Office hours at http://oh.ds.100.org/

Thursday 1-5 pm (today)

Friday 10-1 pm (tomorrow)



Wednesday 12/17

Final exam 8-11 am



Ed support until the morning of the final. Please reach out to us with any questions or concerns!

Good luck studying, you got this 

http://oh.ds.100.org/


Logistics + Housekeeping

The exam prep session will be divided into six 10-15 minute sections:

10:10-10:25 | Pandas, EDA, Regex, Visualizations, Sampling, Simple Linear Regression, 
Constant Model

10:25-10:40 | OLS, Gradient Descent, Cross-Validation, Regularization, Feature Engineering, 
Random Variables, Bias-Variance Tradeoff, Parameter Inference and Bootstrap

10:40-10:50 | SQL

10:50-11:05 | Logistic Regression

11:05-11:15 | Clustering

11:15-11:30 | PCA



This session will focus on topic review for the first half and problem-solving for the last half – we will be doing 
guided walkthroughs of past exams

Please reserve any face-to-face questions you may have for after the session, so we stay on schedule!



Pandas

Pandas is a commonly used Python library for processing tabular data



process data in tables

perform vectorized operations (fast)

extract useful information, data science!



Importing Pandas:

import pandas as pd




Series and DataFrames

A Series is  a vector with index and values that can be accessed with s.index and s.values

A DataFrame is a list of Series stacked together horizontally

A DataFrame is essentially a table class that has efficient storing, retrieving, and modifying 
methods



When we call methods on Series and DataFrames, they stack up from left to right: the output of 
the left method is the input to the right method


example: df.sort_values(“a”).head(10) will return first ten rows of the sorted df 
DataFrame

Note: DataFrames can be created from CSV (comma separated values) file, dictionary, JSON file, etc.



Series operations: selection

We can select values from a Series instance s using:

a single label: s[<a string>]


example:  
s[“apple”]


many labels: s[<a list of strings>]

example:  
s[[“apple”, “banana”, “orange”]]


given a filter (boolean) condition: s[<a boolean list/a 
boolean Series>]


example:  
s[s > 5]



More Series operations

Pandas has many built-in methods to work with Series:



sort Series.sort_values(ascending=True)

replace values Series.map({<old_value>: <new_value>})



Note: Series/DataFrame operations do not occur in-place! You must re-assign the output Series/
DataFrame, unless you explictly set inplace=True as one of the arguments to the method



DataFrame operations: selection

Many ways to extract data from a DataFrame:

.head(), .tail()

label-based extraction: .loc[]


list

slice

single value


integer-based extraction: .iloc[]

list

slice

single value


Note: .iloc[] will always look at the underlying DataFrame index, while .loc[] will look at the 
modified DataFrame



DataFrame

Many ways to extract data from a DataFrame:

label-based extraction: .loc[]


list

slice

single value



Returns DataFrame



DataFrame
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list

slice (inclusive: )
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inclusive

Returns DataFrame
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DataFrame
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DataFrame
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DataFrame

Many ways to extract data from a DataFrame:

integer-based extraction: .iloc[]


list

slice

single value


Returns Series



More DataFrame operations

modify columns

create new columns: df[“col_name”] =  <series/array>

rename columns: df = df.rename(columns={...})

remove columns: df = df.drop(<column_name>, axis=1)


replace values: df.replace({ <old>: <new>, ... })

note: different from Series.map(); DataFrame.replace() is out of scope in Data 100


sort: df.sort_values(<column/a list of columns>, ascending=True/False)

join: left_df.merge(right_df, left_on=<column>, right_on=<column>, 
how=’inner’)

group and filter: df.groupby(...).agg(...)  vs df.groupby(...).filter(...)

pivot table: df.pivot_table()



Other methods: .reset_index(), .set_index(), .fillna(), .isin()



Grouping

df.groupby(<column(s)>)



.agg(f): changes granularity of the DataFrame by aggregating

f is applied to each column, the input is Series

.max(), .sum(), .min()

.size(): returns Series, includes count of rows with NaN

.count(): returns DataFrame, applies count to each column



.filter(f): does not change granularity of the DataFrame

just filters out groups for which the functions returns False

f is applied to whole table, the input is DataFrame



Pivot table

df.pivot_table(values=..., index=..., columns=..., aggfunc='mean', 
fill_value=None): changes granularity of the DataFrame





EDA and four key data properties

Structure: quantitative (numerical) and qualitative (categorical: ordinal/nominal) variable types.

Granularity: what each row represents in the DataFrame.

Temporality: to use the datetime format, need to use .dt accessor.







Faithfulness:  treating missing data

Keep as NaN

Drop

Impute with mean/median or interpolate

Note: dropping rows can introduce additional bias



Visualizations

In Data 100, we teach two libraries for plotting, matplotlib.pyplot and seaborn



Importing both:

import matplotlib.pyplot as plt

import seaborn as sns



matplotlib.pyplot methods take in arrays

lower level


seaborn methods take in argument data for pandas DataFrame; only need to specify column 
names instead of passing in arrays directly


higher level, built on top of matplotlib.pyplot

Note: conventionally alias as sns and plt



One variable

Variable type(s) Best visualization What it shows

Quantitative Histogram Distribution (shape, center, spread, skew)

Quantitative Boxplot Summary statistics (median, IQR, outliers)

Quantitative Density plot (KDE) Smoothed estimate of the distribution

Qualitative Bar chart Counts/frequency of each category

Qualitative Pie chart Proportion of categories



Two variables

Variable type(s) Best visualization What it shows

Quant + Quant Scatter plot Relationship (correlation, trends, outliers)

Quant + Quant Hex plot Relationship (correlation, trends, outliers); 
reduces overplotting

Quant + Quant Line plot Temporal trends over time

Quant + Qual Boxplot per category Distribution of values per category

Quant + Qual Violin plot per category Shape and distribution of values per category

Qual + Qual Stacked bar chart Part-to-whole within categories



Three and more variables

Variable type(s) Best visualization What it shows

All Quant Heatmap e.g. correlation matrix Strength and direction of variable correlations

Mixed Quant + Qual Color or shape in scatter plot Adds third (or more) variables via encoding



Kernel Density Estimation

Idea: approximate true distribution



To calculate KDE curve, we need to:

For each data point, assign kernel (error range) 


we assume raw data is noisy, so treat it as a random sample

Sum up the kernels across all data points

Normalize to have total area 1 below the curve


the total probability should be 1 after we integrate



In class, we go over a Gaussian kernel centered at data point x_i with fixed bandwidth 1.

Note: There are many other kernel types! To name some:  Boxcar (uniform), Epanechnikov, Cosine. 



KDE curve

Step-by-step

Each kernel has area 1.

Sum the five normalized curves together.



Effect of bandwidth

As we increase bandwidth (=variance), the KDE curve becomes “smoother”

intuitively, we remove more and more noise



String        String

String vs Series with strings

Series of strings        Series of strings

s.lower()

s.split()


len(s)

df[‘col1’].str.lower()

df[‘col1’].str.split()


df[‘col1’].str.lower().str.split()

Pandas data accessor .str method is vectorized, 
meaning it accesses one string from a row at a time

Python assumes we are working 
with one string at a time

.str methods are stackable!

Before diving into regex expressions, it’s important to clarify how pandas treats strings



A regular expression is a sequence of characters that specifies a search pattern



We use raw strings for regex patterns that follow r’<pattern>’ format



Order of regex operations (left-to-right): grouping with (), *, concatenation, |


Regex



Meaning Pattern Match

Look for consecutive characters r’AABBAB’ ‘AABBAB’ only

| Match one pattern or another r’AA|BBAB’ ‘AA’ or ‘BBAB’ only

* Match zero or more of a pattern r’AB*A’ Match: ‘AA’, ‘ABBBBA’

: ‘AB’, ‘ABABAB’Won’t match

() Group operations together and 
apply one regex op to multiple 
characters

r’A(A|B)AAB’ ‘AAAAB’, ‘ABAAB’



Meaning Pattern Match

. Look for any character other than \n 
(newline)

r’.U.U.U.’ Match: ‘CUMULUS’

 ‘UUU’Won’t match:

+ One or more character r’AB+’ ‘AB’, ‘ABB’, ‘ABBB’

{x} Repeat exactly x times r’AB{2}’ ‘ABB’ only

{x, y} Repeat between x and y times, 
inclusively

r’AB{0,2}’ ‘A’, ‘AB’, ‘ABB’

? Exactly zero or one times r’AB?’ ‘A’ or ‘AB’ only

[] Define an alphabet aka character class.

All characters inside are literal

r’[A-Za-z]’ 
r’[a-z0-9]’



r’[aeiou]’

all letters 
all lowercase letters & digits: 
‘2a34b’ 
all vowels: ‘aaaaiee’



Meaning Pattern Match

[^] Negate a character class aka 
matches all characters EXCEPT the 
following character

r’[^A-Z]’ any character that is NOT an uppercase 
letter: ‘2z34b’

\ Read next char literally r’a\+b’ ‘a+b’ only (‘+’ is no longer an 
operation)

^ Match beginning of a string r‘^abc’ Match: ‘abc’ from ‘abc123’

 ‘123abc’Won’t match:

$ Match end of a line or a whole 
string

r‘abc$’ Match: ‘abc’ from ‘123abc’ 

 ‘abc123’Won’t match:

Note: assume we use re.search(pattern, string)



String = ‘aaaaabaac’



Pattern = r’a+ba*’



Match = ‘aaaaabaa’

String = "This is an <div>example</div> 
of greediness <div>in</div> regular 
expressions."



Pattern = r”<div>.*</div>”



Match = “<div>example</div> of greediness 
<div>in</div>”


Greediness

Regex is greedy, meaning it looks for the first longest continuous match in a string

Note: there is no difference between ‘’ and “” in Python



Non-greediness with +? and *?

We can remove greediness with adding ? tag to + and * operators

"This is an  of greediness  regular 
expressions."

<div> <div>example in</div> </div>

What we are telling regex:

               Look for the exact string ‘<div>’

               
               

Grab every character except \n

Until the FIRST instance of ‘</div>’

1.
2.
3.

r”<div>.*?</div>”

(joint *? operator is applied to .)



Sampling

sample: a subset of population

sampling frame: where we draw sample from



We may use convenience sample (non-random) and probability sample (random).



Sampling errors

Error What it means How to avoid

Selection bias Systematically exclude (or favor) 
particular groups

Random sampling, increase overlap of sampling 
frame and population

Response bias People do not always respond 
truthfully

Ask better questions with neutral and clear 
language, ensure anonymity

Non-response bias People do not always respond Increase response rate

Note: no sampling method prevents response bias!



Common sampling methods

uniform random sample with replacement

uniform random sample without replacement is called simple random sample (SRS)

stratified random sample: sampling frame is divided into non-overlapping strata according to 
choose categories, and we carry SRS on each strata, after which we scale it by sampling frame size 
of each strata

probability sample: any sample that we can find probability of



Modeling pipeline

Choose a model Constant model, SLR model, OLS model, etc.

Choose a loss function L1 loss (MAE), L2 loss (MSE), cross-entropy loss, etc.

Fit the model Use the derivative of the cost function (average loss) to 
find a minimum

Evaluate the model RMSE, residual plots



Constant Model

doesn’t depend on input x

always outputs the same number



Simple Linear Regression (SLR)

predicted value parameters input/feature

Note: SLR best fit line is unique if there is nonzero variance in the data points, yes!



Fitting the model

Best model = the one that minimizes loss 
(error)



How to minimize:

find derivative of loss function

find values of theta when derivative is 
zero

if the function is convex, the point with 
derivative=0 is the global minimum

Define L2 loss function:

Use constant model for predicted y:

Set derivative to 0 and solve for theta:

Example



OLS (Ordinary Least Squares)

Motivation: Multiple Linear Regression (We want to include more than 1 feature!)





Measuring Loss with OLS

MSE Metric from SLR, extended to this new matrix model.

Remember that our prediction vector is our design matrix * parameter vector 



Geometric View of OLS



The Normal Equation

What is the optimal value of the parameter vector to minimize L2 Loss?


has to be invertible!




Gradient Descent 

Sometimes, the loss function isn’t as simple! Gradient descent is a new optimization technique for 
more complex loss functions.

BIG IDEA: use an iterative algorithm to numerically compute the minimum of the loss.





Regularization

Why do we need regularization? We start to overfit!

We use too many features → model complexity increases

On the BVT curve, this corresponds to low bias, high variance!






Cross Validation (k-fold)

Important application: Picking hyperparameters like lamdba (regularization)!



Feature Engineering

Definition: a process of transforming raw features into more informative features for use in 
modeling



Examples:

One Hot Encoding 

Polynomial Features



Random Variable

Definition: a random variable (RV) represents the outcome of a random experiment
 

Discrete RV: can take only discrete values

a listable number of possible outcomes and 
associated probabilities

Continuous RV:  can take only ranges of values. 

an unlistable number of possible outcomes

probabilities are a continuous function (pdf)

Expectation: what outcome we expect from RV
Variance: measure of a RV’s chance error



Formulas: Expectation, Variance, and Covariance



Bias-Variance Tradeoff

Key idea: as the model complexity increases, model bias decreases and model variance increases

Bias: how well model architecture is suitable for making predictions Variance: variability of model predictions



Formulas: Bias-Variance Decomposition



Bootstrapping [Data 8]

Idea: creating parallel universes



Bootstrapping:

treat the observed dataset as if it is a population

repeatedly sample with replacement from the dataset to create many bootstrap samples


compute parameter on each bootstrap sample

use bootstrapped parameter distribution



We can use bootstrap to estimate a parameter when we don’t know the parameter’s distribution

e.g. parameter could be theta, mean, median, feature coefficient in regression, etc.





Parameter Inference

Correlational inference: passive observation



Are homes with granite countertops worth 
more money?

Do people with college degrees have higher 
lifetime earning?

Are people who smoke more likely to get 
cancer?


Causational inference: effects of interventions



How much do granite countertops raise the 
value of a house?

Does getting a college degree increase 
lifetime earnings?

Does smoking cause cancer?

To infer causality, we require randomization.

However, it is not always possible. For example, we cannot run an experiment of randomly assigning 
college degrees to students and seeing if lifetime earnings in one group is higher. This is just unethical



SQLSQL syntax

SELECT *

FROM table1 AS a JOIN table2 AS b ON condition

WHERE condition

ORDER BY column DESC

GROUP BY column HAVING condition

LIMIT n;



Defining new column with cases:

    CASE WHEN condition THEN value

        [WHEN condition THEN value]

        ELSE value

        END

Note: we use single quotes for strings, double quotes and no quotes for table and column names



JOIN

Specify joins between tables as part of the FROM statement

There are also cross-joins, which is 
every combination of possible rows. 
Also called a cartesian product.


SELECT *

FROM table1 INNER JOIN table2 

ON table1.key = table2.key



SQL Practice



Su25 Final Q1d Making Room for pandas



Sp21 MT2 Q1 

Regular Ice, SQLite Sugar



Logistic regression

Idea: predict probabilities for each class, and pick class with highest probability

Note: logistic regression is a classification model for predicting classes, not a regression model!



Motivation



Cross-Entropy loss function 



Evaluate a logistic regression model

We use confusion matrix with FP, FN, TP, and TN and ROC curve



Precision: TP / (TP + FP)

Recall: TP / (TP + FN)



Regularized logistic regression



Logistic Regression 
Practice



SP22 MT2 Q3a

Edison Takeover



SP22 MT2 Q3b

Edison Takeover



SP22 MT2 Q3c

Edison Takeover



Motivation



Clustering



K-Means algorithm

Pick K random points as centers of different clusters

Repeat until convergence:


pick unassigned point,  assign to the cluster with the closest center

move center for that color to center of points with that color





Evaluate a clustering model

Two common loss functions:

Inertia: sum of squared distance from each data point to its center

Distortion: weighed sum of squared distance from each data point to its center, where each point 
is inversely weighed by total # of points in cluster

Note: if we have K = n data points, we overfit and our inertia is 0; K is a hyperparameter



Silhouette score

S = (B - A) / max(A, B)   [where A is average distance to points in SAME cluster, B = to CLOSEST]

High score: Close to points in its own cluster. Far from points in other clusters.

Low score: Far from points in its own cluster. Close to points in other clusters.



Cons: K-Means is sensitive to outliers

The inertia on the right is lower; however, clusters on the left make more intuitive sense

Note: K-Means is best when clusters are spherical shaped



Hierarchical agglomerative clustering algorithm

Initialize each point as its own cluster

Repeat until convergence:


merge the most similar clusters according to linkage criteria, until we have just one giant 
cluster



Linkage criteria:

Single linkage:  min distance between two points in different clusters 
Average linkage: average of all pairwise distance between clusters 

Complete linkage: 
for every pair of clusters, compute max distance between any two points

merge the cluster pair with the smallest max distance

“bumpy” shaped clusters

average between single and 

complete linkage

spherically shaped, compact, well separated clusters


Note: we go bottom-up, agglomerating clusters on the go!



Cons: hierarchical agglomerative clustering is also 
sensitive to outliers

Note: can see hierarchy in relationships!



Clustering Practice



SP23 Final Q11

Cluster it All



Su24 Final Q2

Pikachu, Charizard, and Arceus



Su24 Final Q2

Pikachu, Charizard, and Arceus



Principal Component Analysis

Big idea: reduce the dimensionality of our data 
while staying true to it (capturing max amount 
of variation). 



The data on the right approximately lives on 
a line even though it is two dimensional

We want to find a change of basis of our 
variables so that each feature we use 
maximizes the amount of information being 
represented



Each principal component (PC) tries to capture 
max variance of the data towards one direction.



Principal Component Analysis

Task: find the directions in our data that capture the most variance in our data. 



Principal Component Analysis

We can keep the top k directions that capture the most variance. These represent projections of 
our data onto the most variance-capturing directions in our data. 



Principal Component Analysis

After finding the directions of maximum variance, we change the basis of our coordinate system to 
these directions. 



Principal Component Analysis

The principal component matrix can be right multiplied to your feature matrix to obtain a 
matrix of latent features, called Z. 

Once we obtain our principle component matrix, we can use this as as change of coordinate 
transformation. 

Note: you do not need to know how to compute this matrix in Fall 2025



PCA Practice



Fa23 Final Q9

PieCe-A cake



Fa23 Final Q9

PieCe-A cake



Fa24 Final Q7

PCA in Cooking



Thank you for coming!

Note: CCAO and SQL are out of scope

Sardaana Eginova, Sarika Pasumarthy, Kelly Hu, Collin Duong


