
Final Review
Midterm 1: Pandas, EDA, Regex, Visualizations, Sampling, Simple Linear Regression, Constant Model

Midterm 2: OLS, Gradient Descent, Cross-Validation, Regularization, Feature Engineering, Random Variables,

Bias-Variance Tradeoff, Parameter Inference and Bootstrap

Post midterm 2: SQL, Logistic Regression, Clustering, PCA

Sardaana Eginova, Sarika Pasumarthy, Kelly Hu, Collin Duong

Fall 2025

Announcements

Office hours at http://oh.ds.100.org/

Thursday 1-5 pm (today)

Friday 10-1 pm (tomorrow)

Wednesday 12/17

Final exam 8-11 am

Ed support until the morning of the final. Please reach out to us with any questions or concerns!

Good luck studying, you got this

http://oh.ds.100.org/

Logistics + Housekeeping

The exam prep session will be divided into six 10-15 minute sections:

10:10-10:25 | Pandas, EDA, Regex, Visualizations, Sampling, Simple Linear Regression,
Constant Model

10:25-10:40 | OLS, Gradient Descent, Cross-Validation, Regularization, Feature Engineering,
Random Variables, Bias-Variance Tradeoff, Parameter Inference and Bootstrap

10:40-10:50 | SQL

10:50-11:05 | Logistic Regression

11:05-11:15 | Clustering

11:15-11:30 | PCA

This session will focus on topic review for the first half and problem-solving for the last half – we will be doing
guided walkthroughs of past exams

Please reserve any face-to-face questions you may have for after the session, so we stay on schedule!

Pandas

Pandas is a commonly used Python library for processing tabular data

process data in tables

perform vectorized operations (fast)

extract useful information, data science!

Importing Pandas:

import pandas as pd

Series and DataFrames

A Series is a vector with index and values that can be accessed with s.index and s.values

A DataFrame is a list of Series stacked together horizontally

A DataFrame is essentially a table class that has efficient storing, retrieving, and modifying
methods

When we call methods on Series and DataFrames, they stack up from left to right: the output of
the left method is the input to the right method

example: df.sort_values(“a”).head(10) will return first ten rows of the sorted df
DataFrame

Note: DataFrames can be created from CSV (comma separated values) file, dictionary, JSON file, etc.

Series operations: selection

We can select values from a Series instance s using:

a single label: s[<a string>]

example:  
s[“apple”]

many labels: s[<a list of strings>]

example:  
s[[“apple”, “banana”, “orange”]]

given a filter (boolean) condition: s[<a boolean list/a
boolean Series>]

example:  
s[s > 5]

More Series operations

Pandas has many built-in methods to work with Series:

sort Series.sort_values(ascending=True)

replace values Series.map({<old_value>: <new_value>})

Note: Series/DataFrame operations do not occur in-place! You must re-assign the output Series/
DataFrame, unless you explictly set inplace=True as one of the arguments to the method

DataFrame operations: selection

Many ways to extract data from a DataFrame:

.head(), .tail()

label-based extraction: .loc[]

list

slice

single value

integer-based extraction: .iloc[]

list

slice

single value

Note: .iloc[] will always look at the underlying DataFrame index, while .loc[] will look at the
modified DataFrame

DataFrame

Many ways to extract data from a DataFrame:

label-based extraction: .loc[]

list

slice

single value

Returns DataFrame

DataFrame

Many ways to extract data from a DataFrame:

label-based extraction: .loc[]

list

slice (inclusive:)

single value

inclusive

Returns DataFrame

DataFrame

Many ways to extract data from a DataFrame:

label-based extraction: .loc[]

list

slice

single value

Returns Series

DataFrame

Many ways to extract data from a DataFrame:

integer-based extraction: .iloc[]

list

slice

single value

Returns DataFrame

DataFrame

Many ways to extract data from a DataFrame:

integer-based extraction: .iloc[]

list

slice (inclusive:)

single value

exclusive

Returns DataFrame

DataFrame

Many ways to extract data from a DataFrame:

integer-based extraction: .iloc[]

list

slice

single value

Returns Series

More DataFrame operations

modify columns

create new columns: df[“col_name”] = <series/array>

rename columns: df = df.rename(columns={...})

remove columns: df = df.drop(<column_name>, axis=1)

replace values: df.replace({ <old>: <new>, ... })

note: different from Series.map(); DataFrame.replace() is out of scope in Data 100

sort: df.sort_values(<column/a list of columns>, ascending=True/False)

join: left_df.merge(right_df, left_on=<column>, right_on=<column>,
how=’inner’)

group and filter: df.groupby(...).agg(...) vs df.groupby(...).filter(...)

pivot table: df.pivot_table()

Other methods: .reset_index(), .set_index(), .fillna(), .isin()

Grouping

df.groupby(<column(s)>)

.agg(f): changes granularity of the DataFrame by aggregating

f is applied to each column, the input is Series

.max(), .sum(), .min()

.size(): returns Series, includes count of rows with NaN

.count(): returns DataFrame, applies count to each column

.filter(f): does not change granularity of the DataFrame

just filters out groups for which the functions returns False

f is applied to whole table, the input is DataFrame

Pivot table

df.pivot_table(values=..., index=..., columns=..., aggfunc='mean',
fill_value=None): changes granularity of the DataFrame

EDA and four key data properties

Structure: quantitative (numerical) and qualitative (categorical: ordinal/nominal) variable types.

Granularity: what each row represents in the DataFrame.

Temporality: to use the datetime format, need to use .dt accessor.

Faithfulness: treating missing data

Keep as NaN

Drop

Impute with mean/median or interpolate

Note: dropping rows can introduce additional bias

Visualizations

In Data 100, we teach two libraries for plotting, matplotlib.pyplot and seaborn

Importing both:

import matplotlib.pyplot as plt

import seaborn as sns

matplotlib.pyplot methods take in arrays

lower level

seaborn methods take in argument data for pandas DataFrame; only need to specify column
names instead of passing in arrays directly

higher level, built on top of matplotlib.pyplot

Note: conventionally alias as sns and plt

One variable

Variable type(s) Best visualization What it shows

Quantitative Histogram Distribution (shape, center, spread, skew)

Quantitative Boxplot Summary statistics (median, IQR, outliers)

Quantitative Density plot (KDE) Smoothed estimate of the distribution

Qualitative Bar chart Counts/frequency of each category

Qualitative Pie chart Proportion of categories

Two variables

Variable type(s) Best visualization What it shows

Quant + Quant Scatter plot Relationship (correlation, trends, outliers)

Quant + Quant Hex plot Relationship (correlation, trends, outliers);
reduces overplotting

Quant + Quant Line plot Temporal trends over time

Quant + Qual Boxplot per category Distribution of values per category

Quant + Qual Violin plot per category Shape and distribution of values per category

Qual + Qual Stacked bar chart Part-to-whole within categories

Three and more variables

Variable type(s) Best visualization What it shows

All Quant Heatmap e.g. correlation matrix Strength and direction of variable correlations

Mixed Quant + Qual Color or shape in scatter plot Adds third (or more) variables via encoding

Kernel Density Estimation

Idea: approximate true distribution

To calculate KDE curve, we need to:

For each data point, assign kernel (error range)

we assume raw data is noisy, so treat it as a random sample

Sum up the kernels across all data points

Normalize to have total area 1 below the curve

the total probability should be 1 after we integrate

In class, we go over a Gaussian kernel centered at data point x_i with fixed bandwidth 1.

Note: There are many other kernel types! To name some: Boxcar (uniform), Epanechnikov, Cosine.

KDE curve

Step-by-step

Each kernel has area 1.

Sum the five normalized curves together.

Effect of bandwidth

As we increase bandwidth (=variance), the KDE curve becomes “smoother”

intuitively, we remove more and more noise

String String

String vs Series with strings

Series of strings Series of strings

s.lower()

s.split()

len(s)

df[‘col1’].str.lower()

df[‘col1’].str.split()

df[‘col1’].str.lower().str.split()

Pandas data accessor .str method is vectorized,
meaning it accesses one string from a row at a time

Python assumes we are working
with one string at a time

.str methods are stackable!

Before diving into regex expressions, it’s important to clarify how pandas treats strings

A regular expression is a sequence of characters that specifies a search pattern

We use raw strings for regex patterns that follow r’<pattern>’ format

Order of regex operations (left-to-right): grouping with (), *, concatenation, |

Regex

Meaning Pattern Match

Look for consecutive characters r’AABBAB’ ‘AABBAB’ only

| Match one pattern or another r’AA|BBAB’ ‘AA’ or ‘BBAB’ only

* Match zero or more of a pattern r’AB*A’ Match: ‘AA’, ‘ABBBBA’

: ‘AB’, ‘ABABAB’Won’t match

() Group operations together and
apply one regex op to multiple
characters

r’A(A|B)AAB’ ‘AAAAB’, ‘ABAAB’

Meaning Pattern Match

. Look for any character other than \n
(newline)

r’.U.U.U.’ Match: ‘CUMULUS’

 ‘UUU’Won’t match:

+ One or more character r’AB+’ ‘AB’, ‘ABB’, ‘ABBB’

{x} Repeat exactly x times r’AB{2}’ ‘ABB’ only

{x, y} Repeat between x and y times,
inclusively

r’AB{0,2}’ ‘A’, ‘AB’, ‘ABB’

? Exactly zero or one times r’AB?’ ‘A’ or ‘AB’ only

[] Define an alphabet aka character class.

All characters inside are literal

r’[A-Za-z]’ 
r’[a-z0-9]’

r’[aeiou]’

all letters 
all lowercase letters & digits:
‘2a34b’ 
all vowels: ‘aaaaiee’

Meaning Pattern Match

[^] Negate a character class aka
matches all characters EXCEPT the
following character

r’[^A-Z]’ any character that is NOT an uppercase
letter: ‘2z34b’

\ Read next char literally r’a\+b’ ‘a+b’ only (‘+’ is no longer an
operation)

^ Match beginning of a string r‘^abc’ Match: ‘abc’ from ‘abc123’

 ‘123abc’Won’t match:

$ Match end of a line or a whole
string

r‘abc$’ Match: ‘abc’ from ‘123abc’

 ‘abc123’Won’t match:

Note: assume we use re.search(pattern, string)

String = ‘aaaaabaac’

Pattern = r’a+ba*’

Match = ‘aaaaabaa’

String = "This is an <div>example</div>
of greediness <div>in</div> regular
expressions."

Pattern = r”<div>.*</div>”

Match = “<div>example</div> of greediness
<div>in</div>”

Greediness

Regex is greedy, meaning it looks for the first longest continuous match in a string

Note: there is no difference between ‘’ and “” in Python

Non-greediness with +? and *?

We can remove greediness with adding ? tag to + and * operators

"This is an of greediness regular
expressions."

<div> <div>example in</div> </div>

What we are telling regex:

 Look for the exact string ‘<div>’

Grab every character except \n

Until the FIRST instance of ‘</div>’

1.
2.
3.

r”<div>.*?</div>”

(joint *? operator is applied to .)

Sampling

sample: a subset of population

sampling frame: where we draw sample from

We may use convenience sample (non-random) and probability sample (random).

Sampling errors

Error What it means How to avoid

Selection bias Systematically exclude (or favor)
particular groups

Random sampling, increase overlap of sampling
frame and population

Response bias People do not always respond
truthfully

Ask better questions with neutral and clear
language, ensure anonymity

Non-response bias People do not always respond Increase response rate

Note: no sampling method prevents response bias!

Common sampling methods

uniform random sample with replacement

uniform random sample without replacement is called simple random sample (SRS)

stratified random sample: sampling frame is divided into non-overlapping strata according to
choose categories, and we carry SRS on each strata, after which we scale it by sampling frame size
of each strata

probability sample: any sample that we can find probability of

Modeling pipeline

Choose a model Constant model, SLR model, OLS model, etc.

Choose a loss function L1 loss (MAE), L2 loss (MSE), cross-entropy loss, etc.

Fit the model Use the derivative of the cost function (average loss) to
find a minimum

Evaluate the model RMSE, residual plots

Constant Model

doesn’t depend on input x

always outputs the same number

Simple Linear Regression (SLR)

predicted value parameters input/feature

Note: SLR best fit line is unique if there is nonzero variance in the data points, yes!

Fitting the model

Best model = the one that minimizes loss
(error)

How to minimize:

find derivative of loss function

find values of theta when derivative is
zero

if the function is convex, the point with
derivative=0 is the global minimum

Define L2 loss function:

Use constant model for predicted y:

Set derivative to 0 and solve for theta:

Example

OLS (Ordinary Least Squares)

Motivation: Multiple Linear Regression (We want to include more than 1 feature!)

Measuring Loss with OLS

MSE Metric from SLR, extended to this new matrix model.

Remember that our prediction vector is our design matrix * parameter vector

Geometric View of OLS

The Normal Equation

What is the optimal value of the parameter vector to minimize L2 Loss?

has to be invertible!

Gradient Descent

Sometimes, the loss function isn’t as simple! Gradient descent is a new optimization technique for
more complex loss functions.

BIG IDEA: use an iterative algorithm to numerically compute the minimum of the loss.

Regularization

Why do we need regularization? We start to overfit!

We use too many features → model complexity increases

On the BVT curve, this corresponds to low bias, high variance!

Cross Validation (k-fold)

Important application: Picking hyperparameters like lamdba (regularization)!

Feature Engineering

Definition: a process of transforming raw features into more informative features for use in
modeling

Examples:

One Hot Encoding

Polynomial Features

Random Variable

Definition: a random variable (RV) represents the outcome of a random experiment
 

Discrete RV: can take only discrete values

a listable number of possible outcomes and
associated probabilities

Continuous RV: can take only ranges of values.

an unlistable number of possible outcomes

probabilities are a continuous function (pdf)

Expectation: what outcome we expect from RV
Variance: measure of a RV’s chance error

Formulas: Expectation, Variance, and Covariance

Bias-Variance Tradeoff

Key idea: as the model complexity increases, model bias decreases and model variance increases

Bias: how well model architecture is suitable for making predictions Variance: variability of model predictions

Formulas: Bias-Variance Decomposition

Bootstrapping [Data 8]

Idea: creating parallel universes

Bootstrapping:

treat the observed dataset as if it is a population

repeatedly sample with replacement from the dataset to create many bootstrap samples

compute parameter on each bootstrap sample

use bootstrapped parameter distribution

We can use bootstrap to estimate a parameter when we don’t know the parameter’s distribution

e.g. parameter could be theta, mean, median, feature coefficient in regression, etc.

Parameter Inference

Correlational inference: passive observation

Are homes with granite countertops worth
more money?

Do people with college degrees have higher
lifetime earning?

Are people who smoke more likely to get
cancer?

Causational inference: effects of interventions

How much do granite countertops raise the
value of a house?

Does getting a college degree increase
lifetime earnings?

Does smoking cause cancer?

To infer causality, we require randomization.

However, it is not always possible. For example, we cannot run an experiment of randomly assigning
college degrees to students and seeing if lifetime earnings in one group is higher. This is just unethical

SQLSQL syntax

SELECT *

FROM table1 AS a JOIN table2 AS b ON condition

WHERE condition

ORDER BY column DESC

GROUP BY column HAVING condition

LIMIT n;

Defining new column with cases:

 CASE WHEN condition THEN value

 [WHEN condition THEN value]

 ELSE value

 END

Note: we use single quotes for strings, double quotes and no quotes for table and column names

JOIN

Specify joins between tables as part of the FROM statement

There are also cross-joins, which is
every combination of possible rows.
Also called a cartesian product.

SELECT *

FROM table1 INNER JOIN table2

ON table1.key = table2.key

SQL Practice

Su25 Final Q1d Making Room for pandas

Sp21 MT2 Q1

Regular Ice, SQLite Sugar

Logistic regression

Idea: predict probabilities for each class, and pick class with highest probability

Note: logistic regression is a classification model for predicting classes, not a regression model!

Motivation

Cross-Entropy loss function

Evaluate a logistic regression model

We use confusion matrix with FP, FN, TP, and TN and ROC curve

Precision: TP / (TP + FP)

Recall: TP / (TP + FN)

Regularized logistic regression

Logistic Regression
Practice

SP22 MT2 Q3a

Edison Takeover

SP22 MT2 Q3b

Edison Takeover

SP22 MT2 Q3c

Edison Takeover

Motivation

Clustering

K-Means algorithm

Pick K random points as centers of different clusters

Repeat until convergence:

pick unassigned point, assign to the cluster with the closest center

move center for that color to center of points with that color

Evaluate a clustering model

Two common loss functions:

Inertia: sum of squared distance from each data point to its center

Distortion: weighed sum of squared distance from each data point to its center, where each point
is inversely weighed by total # of points in cluster

Note: if we have K = n data points, we overfit and our inertia is 0; K is a hyperparameter

Silhouette score

S = (B - A) / max(A, B) [where A is average distance to points in SAME cluster, B = to CLOSEST]

High score: Close to points in its own cluster. Far from points in other clusters.

Low score: Far from points in its own cluster. Close to points in other clusters.

Cons: K-Means is sensitive to outliers

The inertia on the right is lower; however, clusters on the left make more intuitive sense

Note: K-Means is best when clusters are spherical shaped

Hierarchical agglomerative clustering algorithm

Initialize each point as its own cluster

Repeat until convergence:

merge the most similar clusters according to linkage criteria, until we have just one giant
cluster

Linkage criteria:

Single linkage: min distance between two points in different clusters
Average linkage: average of all pairwise distance between clusters

Complete linkage:
for every pair of clusters, compute max distance between any two points

merge the cluster pair with the smallest max distance

“bumpy” shaped clusters

average between single and

complete linkage

spherically shaped, compact, well separated clusters

Note: we go bottom-up, agglomerating clusters on the go!

Cons: hierarchical agglomerative clustering is also
sensitive to outliers

Note: can see hierarchy in relationships!

Clustering Practice

SP23 Final Q11

Cluster it All

Su24 Final Q2

Pikachu, Charizard, and Arceus

Su24 Final Q2

Pikachu, Charizard, and Arceus

Principal Component Analysis

Big idea: reduce the dimensionality of our data
while staying true to it (capturing max amount
of variation).

The data on the right approximately lives on
a line even though it is two dimensional

We want to find a change of basis of our
variables so that each feature we use
maximizes the amount of information being
represented

Each principal component (PC) tries to capture
max variance of the data towards one direction.

Principal Component Analysis

Task: find the directions in our data that capture the most variance in our data.

Principal Component Analysis

We can keep the top k directions that capture the most variance. These represent projections of
our data onto the most variance-capturing directions in our data.

Principal Component Analysis

After finding the directions of maximum variance, we change the basis of our coordinate system to
these directions.

Principal Component Analysis

The principal component matrix can be right multiplied to your feature matrix to obtain a
matrix of latent features, called Z.

Once we obtain our principle component matrix, we can use this as as change of coordinate
transformation.

Note: you do not need to know how to compute this matrix in Fall 2025

PCA Practice

Fa23 Final Q9

PieCe-A cake

Fa23 Final Q9

PieCe-A cake

Fa24 Final Q7

PCA in Cooking

Thank you for coming!

Note: CCAO and SQL are out of scope

Sardaana Eginova, Sarika Pasumarthy, Kelly Hu, Collin Duong

