
Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

Introduction to Algorithms
Third Edition

The MIT Press
Cambridge, Massachusetts London, England

http://mitpress.mit.edu/0262533057

c! 2009 Massachusetts Institute of Technology
All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.
For information about special quantity discounts, please email special sales@mitpress.mit.edu.
This book was set in Times Roman and Mathtime Pro 2 by the authors.
Printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data
Introduction to algorithms / Thomas H. Cormen . . . [et al.].—3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper)
1. Computer programming. 2. Computer algorithms. I. Cormen, Thomas H.

QA76.6.I5858 2009
005.1—dc22

2009008593

10 9 8 7 6 5 4 3 2 1

27 Multithreaded Algorithms

The vast majority of algorithms in this book are serial algorithms suitable for
running on a uniprocessor computer in which only one instruction executes at a
time. In this chapter, we shall extend our algorithmic model to encompass parallel
algorithms, which can run on a multiprocessor computer that permits multiple
instructions to execute concurrently. In particular, we shall explore the elegant
model of dynamic multithreaded algorithms, which are amenable to algorithmic
design and analysis, as well as to efficient implementation in practice.

Parallel computers—computers with multiple processing units—have become
increasingly common, and they span a wide range of prices and performance. Rela-
tively inexpensive desktop and laptop chip multiprocessors contain a single multi-
core integrated-circuit chip that houses multiple processing “cores,” each of which
is a full-fledged processor that can access a common memory. At an intermedi-
ate price/performance point are clusters built from individual computers—often
simple PC-class machines—with a dedicated network interconnecting them. The
highest-priced machines are supercomputers, which often use a combination of
custom architectures and custom networks to deliver the highest performance in
terms of instructions executed per second.

Multiprocessor computers have been around, in one form or another, for
decades. Although the computing community settled on the random-access ma-
chine model for serial computing early on in the history of computer science, no
single model for parallel computing has gained as wide acceptance. A major rea-
son is that vendors have not agreed on a single architectural model for parallel
computers. For example, some parallel computers feature shared memory, where
each processor can directly access any location of memory. Other parallel com-
puters employ distributed memory, where each processor’s memory is private, and
an explicit message must be sent between processors in order for one processor to
access the memory of another. With the advent of multicore technology, however,
every new laptop and desktop machine is now a shared-memory parallel computer,

Chapter 27 Multithreaded Algorithms 773

and the trend appears to be toward shared-memory multiprocessing. Although time
will tell, that is the approach we shall take in this chapter.

One common means of programming chip multiprocessors and other shared-
memory parallel computers is by using static threading, which provides a software
abstraction of “virtual processors,” or threads, sharing a common memory. Each
thread maintains an associated program counter and can execute code indepen-
dently of the other threads. The operating system loads a thread onto a processor
for execution and switches it out when another thread needs to run. Although the
operating system allows programmers to create and destroy threads, these opera-
tions are comparatively slow. Thus, for most applications, threads persist for the
duration of a computation, which is why we call them “static.”

Unfortunately, programming a shared-memory parallel computer directly using
static threads is difficult and error-prone. One reason is that dynamically parti-
tioning the work among the threads so that each thread receives approximately
the same load turns out to be a complicated undertaking. For any but the sim-
plest of applications, the programmer must use complex communication protocols
to implement a scheduler to load-balance the work. This state of affairs has led
toward the creation of concurrency platforms, which provide a layer of software
that coordinates, schedules, and manages the parallel-computing resources. Some
concurrency platforms are built as runtime libraries, but others provide full-fledged
parallel languages with compiler and runtime support.

Dynamic multithreaded programming
One important class of concurrency platform is dynamic multithreading, which is
the model we shall adopt in this chapter. Dynamic multithreading allows program-
mers to specify parallelism in applications without worrying about communication
protocols, load balancing, and other vagaries of static-thread programming. The
concurrency platform contains a scheduler, which load-balances the computation
automatically, thereby greatly simplifying the programmer’s chore. Although the
functionality of dynamic-multithreading environments is still evolving, almost all
support two features: nested parallelism and parallel loops. Nested parallelism
allows a subroutine to be “spawned,” allowing the caller to proceed while the
spawned subroutine is computing its result. A parallel loop is like an ordinary
for loop, except that the iterations of the loop can execute concurrently.

These two features form the basis of the model for dynamic multithreading that
we shall study in this chapter. A key aspect of this model is that the programmer
needs to specify only the logical parallelism within a computation, and the threads
within the underlying concurrency platform schedule and load-balance the compu-
tation among themselves. We shall investigate multithreaded algorithms written for

catherine gamboa

catherine gamboa

774 Chapter 27 Multithreaded Algorithms

this model, as well how the underlying concurrency platform can schedule compu-
tations efficiently.

Our model for dynamic multithreading offers several important advantages:
! It is a simple extension of our serial programming model. We can describe a

multithreaded algorithm by adding to our pseudocode just three “concurrency”
keywords: parallel, spawn, and sync. Moreover, if we delete these concur-
rency keywords from the multithreaded pseudocode, the resulting text is serial
pseudocode for the same problem, which we call the “serialization” of the mul-
tithreaded algorithm.

! It provides a theoretically clean way to quantify parallelism based on the no-
tions of “work” and “span.”

! Many multithreaded algorithms involving nested parallelism follow naturally
from the divide-and-conquer paradigm. Moreover, just as serial divide-and-
conquer algorithms lend themselves to analysis by solving recurrences, so do
multithreaded algorithms.

! The model is faithful to how parallel-computing practice is evolving. A grow-
ing number of concurrency platforms support one variant or another of dynamic
multithreading, including Cilk [51, 118], Cilk++ [72], OpenMP [60], Task Par-
allel Library [230], and Threading Building Blocks [292].

Section 27.1 introduces the dynamic multithreading model and presents the met-
rics of work, span, and parallelism, which we shall use to analyze multithreaded
algorithms. Section 27.2 investigates how to multiply matrices with multithread-
ing, and Section 27.3 tackles the tougher problem of multithreading merge sort.

27.1 The basics of dynamic multithreading

We shall begin our exploration of dynamic multithreading using the example of
computing Fibonacci numbers recursively. Recall that the Fibonacci numbers are
defined by recurrence (3.22):
F0 D 0 ;

F1 D 1 ;

Fi D Fi!1 C Fi!2 for i ! 2 :

Here is a simple, recursive, serial algorithm to compute the nth Fibonacci number:

catherine gamboa

catherine gamboa

catherine gamboa

27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n " 1
2 return n
3 else x D FIB.n # 1/
4 y D FIB.n # 2/
5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/
also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/
replicates the work that the first call performs.

Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-
sive calls plus a constant amount of extra work, we obtain the recurrence
T .n/ D T .n # 1/C T .n # 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ " aFn # b, where
a > 1 and b > 0 are constants. Substituting, we obtain

776 Chapter 27 Multithreaded Algorithms

T .n/ " .aFn!1 # b/C .aFn!2 # b/C‚.1/

D a.Fn!1 C Fn!2/ # 2b C‚.1/

D aFn # b # .b # ‚.1//

" aFn # b

if we choose b large enough to dominate the constant in the ‚.1/. We can then
choose a large enough to satisfy the initial condition. The analytical bound
T .n/ D ‚.!n/ ; (27.1)
where ! D .1 C

p
5/=2 is the golden ratio, now follows from equation (3.25).

Since Fn grows exponentially in n, this procedure is a particularly slow way to
compute Fibonacci numbers. (See Problem 31-3 for much faster ways.)

Although the FIB procedure is a poor way to compute Fibonacci numbers, it
makes a good example for illustrating key concepts in the analysis of multithreaded
algorithms. Observe that within FIB.n/, the two recursive calls in lines 3 and 4 to
FIB.n # 1/ and FIB.n # 2/, respectively, are independent of each other: they could
be called in either order, and the computation performed by one in no way affects
the other. Therefore, the two recursive calls can run in parallel.

We augment our pseudocode to indicate parallelism by adding the concurrency
keywords spawn and sync. Here is how we can rewrite the FIB procedure to use
dynamic multithreading:
P-FIB.n/

1 if n " 1
2 return n
3 else x D spawn P-FIB.n # 1/
4 y D P-FIB.n # 2/
5 sync
6 return x C y

Notice that if we delete the concurrency keywords spawn and sync from P-FIB,
the resulting pseudocode text is identical to FIB (other than renaming the procedure
in the header and in the two recursive calls). We define the serialization of a mul-
tithreaded algorithm to be the serial algorithm that results from deleting the multi-
threaded keywords: spawn, sync, and when we examine parallel loops, parallel.
Indeed, our multithreaded pseudocode has the nice property that a serialization is
always ordinary serial pseudocode to solve the same problem.
Nested parallelism occurs when the keyword spawn precedes a procedure call,

as in line 3. The semantics of a spawn differs from an ordinary procedure call in
that the procedure instance that executes the spawn—the parent—may continue
to execute in parallel with the spawned subroutine—its child—instead of waiting

catherine gamboa

catherine gamboa

catherine gamboa

27.1 The basics of dynamic multithreading 777

for the child to complete, as would normally happen in a serial execution. In this
case, while the spawned child is computing P-FIB.n # 1/, the parent may go on
to compute P-FIB.n # 2/ in line 4 in parallel with the spawned child. Since the
P-FIB procedure is recursive, these two subroutine calls themselves create nested
parallelism, as do their children, thereby creating a potentially vast tree of subcom-
putations, all executing in parallel.

The keyword spawn does not say, however, that a procedure must execute con-
currently with its spawned children, only that it may. The concurrency keywords
express the logical parallelism of the computation, indicating which parts of the
computation may proceed in parallel. At runtime, it is up to a scheduler to deter-
mine which subcomputations actually run concurrently by assigning them to avail-
able processors as the computation unfolds. We shall discuss the theory behind
schedulers shortly.

A procedure cannot safely use the values returned by its spawned children until
after it executes a sync statement, as in line 5. The keyword sync indicates that
the procedure must wait as necessary for all its spawned children to complete be-
fore proceeding to the statement after the sync. In the P-FIB procedure, a sync
is required before the return statement in line 6 to avoid the anomaly that would
occur if x and y were summed before x was computed. In addition to explicit
synchronization provided by the sync statement, every procedure executes a sync
implicitly before it returns, thus ensuring that all its children terminate before it
does.

A model for multithreaded execution
It helps to think of a multithreaded computation—the set of runtime instruc-
tions executed by a processor on behalf of a multithreaded program—as a directed
acyclic graph G D .V; E/, called a computation dag. As an example, Figure 27.2
shows the computation dag that results from computing P-FIB.4/. Conceptually,
the vertices in V are instructions, and the edges in E represent dependencies be-
tween instructions, where .u; "/ 2 E means that instruction u must execute before
instruction ". For convenience, however, if a chain of instructions contains no
parallel control (no spawn, sync, or return from a spawn—via either an explicit
return statement or the return that happens implicitly upon reaching the end of
a procedure), we may group them into a single strand, each of which represents
one or more instructions. Instructions involving parallel control are not included
in strands, but are represented in the structure of the dag. For example, if a strand
has two successors, one of them must have been spawned, and a strand with mul-
tiple predecessors indicates the predecessors joined because of a sync statement.
Thus, in the general case, the set V forms the set of strands, and the set E of di-
rected edges represents dependencies between strands induced by parallel control.

778 Chapter 27 Multithreaded Algorithms

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)

Figure 27.2 A directed acyclic graph representing the computation of P-FIB.4/. Each circle rep-
resents one strand, with black circles representing either base cases or the part of the procedure
(instance) up to the spawn of P-FIB.n # 1/ in line 3, shaded circles representing the part of the pro-
cedure that calls P-FIB.n # 2/ in line 4 up to the sync in line 5, where it suspends until the spawn of
P-FIB.n # 1/ returns, and white circles representing the part of the procedure after the sync where
it sums x and y up to the point where it returns the result. Each group of strands belonging to the
same procedure is surrounded by a rounded rectangle, lightly shaded for spawned procedures and
heavily shaded for called procedures. Spawn edges and call edges point downward, continuation
edges point horizontally to the right, and return edges point upward. Assuming that each strand takes
unit time, the work equals 17 time units, since there are 17 strands, and the span is 8 time units, since
the critical path—shown with shaded edges—contains 8 strands.

If G has a directed path from strand u to strand ", we say that the two strands are
(logically) in series. Otherwise, strands u and " are (logically) in parallel.

We can picture a multithreaded computation as a dag of strands embedded in a
tree of procedure instances. For example, Figure 27.1 shows the tree of procedure
instances for P-FIB.6/ without the detailed structure showing strands. Figure 27.2
zooms in on a section of that tree, showing the strands that constitute each proce-
dure. All directed edges connecting strands run either within a procedure or along
undirected edges in the procedure tree.

We can classify the edges of a computation dag to indicate the kind of dependen-
cies between the various strands. A continuation edge .u; u0/, drawn horizontally
in Figure 27.2, connects a strand u to its successor u0 within the same procedure
instance. When a strand u spawns a strand ", the dag contains a spawn edge .u; "/,
which points downward in the figure. Call edges, representing normal procedure
calls, also point downward. Strand u spawning strand " differs from u calling "
in that a spawn induces a horizontal continuation edge from u to the strand u0 fol-

27.1 The basics of dynamic multithreading 779

lowing u in its procedure, indicating that u0 is free to execute at the same time
as ", whereas a call induces no such edge. When a strand u returns to its calling
procedure and x is the strand immediately following the next sync in the calling
procedure, the computation dag contains return edge .u; x/, which points upward.
A computation starts with a single initial strand—the black vertex in the procedure
labeled P-FIB.4/ in Figure 27.2—and ends with a single final strand—the white
vertex in the procedure labeled P-FIB.4/.

We shall study the execution of multithreaded algorithms on an ideal paral-
lel computer, which consists of a set of processors and a sequentially consistent
shared memory. Sequential consistency means that the shared memory, which may
in reality be performing many loads and stores from the processors at the same
time, produces the same results as if at each step, exactly one instruction from one
of the processors is executed. That is, the memory behaves as if the instructions
were executed sequentially according to some global linear order that preserves the
individual orders in which each processor issues its own instructions. For dynamic
multithreaded computations, which are scheduled onto processors automatically
by the concurrency platform, the shared memory behaves as if the multithreaded
computation’s instructions were interleaved to produce a linear order that preserves
the partial order of the computation dag. Depending on scheduling, the ordering
could differ from one run of the program to another, but the behavior of any exe-
cution can be understood by assuming that the instructions are executed in some
linear order consistent with the computation dag.

In addition to making assumptions about semantics, the ideal-parallel-computer
model makes some performance assumptions. Specifically, it assumes that each
processor in the machine has equal computing power, and it ignores the cost of
scheduling. Although this last assumption may sound optimistic, it turns out that
for algorithms with sufficient “parallelism” (a term we shall define precisely in a
moment), the overhead of scheduling is generally minimal in practice.

Performance measures
We can gauge the theoretical efficiency of a multithreaded algorithm by using two
metrics: “work” and “span.” The work of a multithreaded computation is the total
time to execute the entire computation on one processor. In other words, the work
is the sum of the times taken by each of the strands. For a computation dag in
which each strand takes unit time, the work is just the number of vertices in the
dag. The span is the longest time to execute the strands along any path in the dag.
Again, for a dag in which each strand takes unit time, the span equals the number of
vertices on a longest or critical path in the dag. (Recall from Section 24.2 that we
can find a critical path in a dag G D .V; E/ in ‚.V C E/ time.) For example, the
computation dag of Figure 27.2 has 17 vertices in all and 8 vertices on its critical

780 Chapter 27 Multithreaded Algorithms

path, so that if each strand takes unit time, its work is 17 time units and its span
is 8 time units.

The actual running time of a multithreaded computation depends not only on
its work and its span, but also on how many processors are available and how
the scheduler allocates strands to processors. To denote the running time of a
multithreaded computation on P processors, we shall subscript by P . For example,
we might denote the running time of an algorithm on P processors by TP . The
work is the running time on a single processor, or T1. The span is the running time
if we could run each strand on its own processor—in other words, if we had an
unlimited number of processors—and so we denote the span by T1.

The work and span provide lower bounds on the running time TP of a multi-
threaded computation on P processors:
! In one step, an ideal parallel computer with P processors can do at most P

units of work, and thus in TP time, it can perform at most P TP work. Since the
total work to do is T1, we have P TP ! T1. Dividing by P yields the work law:

TP ! T1=P : (27.2)
! A P -processor ideal parallel computer cannot run any faster than a machine

with an unlimited number of processors. Looked at another way, a machine
with an unlimited number of processors can emulate a P -processor machine by
using just P of its processors. Thus, the span law follows:

TP ! T1 : (27.3)

We define the speedup of a computation on P processors by the ratio T1=TP ,
which says how many times faster the computation is on P processors than
on 1 processor. By the work law, we have TP ! T1=P , which implies that
T1=TP " P . Thus, the speedup on P processors can be at most P . When the
speedup is linear in the number of processors, that is, when T1=TP D ‚.P /, the
computation exhibits linear speedup, and when T1=TP D P , we have perfect
linear speedup.

The ratio T1=T1 of the work to the span gives the parallelism of the multi-
threaded computation. We can view the parallelism from three perspectives. As a
ratio, the parallelism denotes the average amount of work that can be performed in
parallel for each step along the critical path. As an upper bound, the parallelism
gives the maximum possible speedup that can be achieved on any number of pro-
cessors. Finally, and perhaps most important, the parallelism provides a limit on
the possibility of attaining perfect linear speedup. Specifically, once the number of
processors exceeds the parallelism, the computation cannot possibly achieve per-
fect linear speedup. To see this last point, suppose that P > T1=T1, in which case

27.1 The basics of dynamic multithreading 781

the span law implies that the speedup satisfies T1=TP " T1=T1 < P . Moreover,
if the number P of processors in the ideal parallel computer greatly exceeds the
parallelism—that is, if P $ T1=T1—then T1=TP % P , so that the speedup is
much less than the number of processors. In other words, the more processors we
use beyond the parallelism, the less perfect the speedup.

As an example, consider the computation P-FIB.4/ in Figure 27.2, and assume
that each strand takes unit time. Since the work is T1 D 17 and the span is T1 D 8,
the parallelism is T1=T1 D 17=8 D 2:125. Consequently, achieving much more
than double the speedup is impossible, no matter how many processors we em-
ploy to execute the computation. For larger input sizes, however, we shall see that
P-FIB.n/ exhibits substantial parallelism.

We define the (parallel) slackness of a multithreaded computation executed
on an ideal parallel computer with P processors to be the ratio .T1=T1/=P D
T1=.P T1/, which is the factor by which the parallelism of the computation ex-
ceeds the number of processors in the machine. Thus, if the slackness is less than 1,
we cannot hope to achieve perfect linear speedup, because T1=.P T1/ < 1 and the
span law imply that the speedup on P processors satisfies T1=TP " T1=T1 < P .
Indeed, as the slackness decreases from 1 toward 0, the speedup of the computation
diverges further and further from perfect linear speedup. If the slackness is greater
than 1, however, the work per processor is the limiting constraint. As we shall see,
as the slackness increases from 1, a good scheduler can achieve closer and closer
to perfect linear speedup.

Scheduling
Good performance depends on more than just minimizing the work and span. The
strands must also be scheduled efficiently onto the processors of the parallel ma-
chine. Our multithreaded programming model provides no way to specify which
strands to execute on which processors. Instead, we rely on the concurrency plat-
form’s scheduler to map the dynamically unfolding computation to individual pro-
cessors. In practice, the scheduler maps the strands to static threads, and the op-
erating system schedules the threads on the processors themselves, but this extra
level of indirection is unnecessary for our understanding of scheduling. We can
just imagine that the concurrency platform’s scheduler maps strands to processors
directly.

A multithreaded scheduler must schedule the computation with no advance
knowledge of when strands will be spawned or when they will complete—it must
operate on-line. Moreover, a good scheduler operates in a distributed fashion,
where the threads implementing the scheduler cooperate to load-balance the com-
putation. Provably good on-line, distributed schedulers exist, but analyzing them
is complicated.

782 Chapter 27 Multithreaded Algorithms

Instead, to keep our analysis simple, we shall investigate an on-line centralized
scheduler, which knows the global state of the computation at any given time. In
particular, we shall analyze greedy schedulers, which assign as many strands to
processors as possible in each time step. If at least P strands are ready to execute
during a time step, we say that the step is a complete step, and a greedy scheduler
assigns any P of the ready strands to processors. Otherwise, fewer than P strands
are ready to execute, in which case we say that the step is an incomplete step, and
the scheduler assigns each ready strand to its own processor.

From the work law, the best running time we can hope for on P processors
is TP D T1=P , and from the span law the best we can hope for is TP D T1.
The following theorem shows that greedy scheduling is provably good in that it
achieves the sum of these two lower bounds as an upper bound.

Theorem 27.1
On an ideal parallel computer with P processors, a greedy scheduler executes a
multithreaded computation with work T1 and span T1 in time
TP " T1=P C T1 : (27.4)

Proof We start by considering the complete steps. In each complete step, the
P processors together perform a total of P work. Suppose for the purpose of
contradiction that the number of complete steps is strictly greater than bT1=P c.
Then, the total work of the complete steps is at least
P & .bT1=P c C 1/ D P bT1=P c C P

D T1 # .T1 mod P /C P (by equation (3.8))
> T1 (by inequality (3.9)) .

Thus, we obtain the contradiction that the P processors would perform more work
than the computation requires, which allows us to conclude that the number of
complete steps is at most bT1=P c.

Now, consider an incomplete step. Let G be the dag representing the entire
computation, and without loss of generality, assume that each strand takes unit
time. (We can replace each longer strand by a chain of unit-time strands.) Let G0

be the subgraph of G that has yet to be executed at the start of the incomplete step,
and let G00 be the subgraph remaining to be executed after the incomplete step. A
longest path in a dag must necessarily start at a vertex with in-degree 0. Since an
incomplete step of a greedy scheduler executes all strands with in-degree 0 in G0,
the length of a longest path in G00 must be 1 less than the length of a longest path
in G0. In other words, an incomplete step decreases the span of the unexecuted dag
by 1. Hence, the number of incomplete steps is at most T1.

Since each step is either complete or incomplete, the theorem follows.

27.1 The basics of dynamic multithreading 783

The following corollary to Theorem 27.1 shows that a greedy scheduler always
performs well.

Corollary 27.2
The running time TP of any multithreaded computation scheduled by a greedy
scheduler on an ideal parallel computer with P processors is within a factor of 2
of optimal.

Proof Let T "
P be the running time produced by an optimal scheduler on a machine

with P processors, and let T1 and T1 be the work and span of the computation,
respectively. Since the work and span laws—inequalities (27.2) and (27.3)—give
us T "

P ! max.T1=P; T1/, Theorem 27.1 implies that
TP " T1=P C T1

" 2 & max.T1=P; T1/

" 2T "
P :

The next corollary shows that, in fact, a greedy scheduler achieves near-perfect
linear speedup on any multithreaded computation as the slackness grows.

Corollary 27.3
Let TP be the running time of a multithreaded computation produced by a greedy
scheduler on an ideal parallel computer with P processors, and let T1 and T1 be
the work and span of the computation, respectively. Then, if P % T1=T1, we
have TP ' T1=P , or equivalently, a speedup of approximately P .

Proof If we suppose that P % T1=T1, then we also have T1 % T1=P , and
hence Theorem 27.1 gives us TP " T1=P C T1 ' T1=P . Since the work
law (27.2) dictates that TP ! T1=P , we conclude that TP ' T1=P , or equiva-
lently, that the speedup is T1=TP ' P .

The % symbol denotes “much less,” but how much is “much less”? As a rule
of thumb, a slackness of at least 10—that is, 10 times more parallelism than pro-
cessors—generally suffices to achieve good speedup. Then, the span term in the
greedy bound, inequality 27.4, is less than 10% of the work-per-processor term,
which is good enough for most engineering situations. For example, if a computa-
tion runs on only 10 or 100 processors, it doesn’t make sense to value parallelism
of, say 1,000,000 over parallelism of 10,000, even with the factor of 100 differ-
ence. As Problem 27-2 shows, sometimes by reducing extreme parallelism, we
can obtain algorithms that are better with respect to other concerns and which still
scale up well on reasonable numbers of processors.

784 Chapter 27 Multithreaded Algorithms

A

(a) (b)

B
A

B

Work: T1.A [B/ D T1.A/C T1.B/

Span: T1.A[B/ D T1.A/C T1.B/

Work: T1.A [B/ D T1.A/C T1.B/

Span: T1.A [B/ D max.T1.A/; T1.B/)

Figure 27.3 The work and span of composed subcomputations. (a) When two subcomputations
are joined in series, the work of the composition is the sum of their work, and the span of the
composition is the sum of their spans. (b) When two subcomputations are joined in parallel, the
work of the composition remains the sum of their work, but the span of the composition is only the
maximum of their spans.

Analyzing multithreaded algorithms
We now have all the tools we need to analyze multithreaded algorithms and provide
good bounds on their running times on various numbers of processors. Analyzing
the work is relatively straightforward, since it amounts to nothing more than ana-
lyzing the running time of an ordinary serial algorithm—namely, the serialization
of the multithreaded algorithm—which you should already be familiar with, since
that is what most of this textbook is about! Analyzing the span is more interesting,
but generally no harder once you get the hang of it. We shall investigate the basic
ideas using the P-FIB program.

Analyzing the work T1.n/ of P-FIB.n/ poses no hurdles, because we’ve already
done it. The original FIB procedure is essentially the serialization of P-FIB, and
hence T1.n/ D T .n/ D ‚.!n/ from equation (27.1).

Figure 27.3 illustrates how to analyze the span. If two subcomputations are
joined in series, their spans add to form the span of their composition, whereas
if they are joined in parallel, the span of their composition is the maximum of the
spans of the two subcomputations. For P-FIB.n/, the spawned call to P-FIB.n#1/
in line 3 runs in parallel with the call to P-FIB.n # 2/ in line 4. Hence, we can
express the span of P-FIB.n/ as the recurrence
T1.n/ D max.T1.n # 1/; T1.n # 2//C‚.1/

D T1.n # 1/C‚.1/ ;

which has solution T1.n/ D ‚.n/.
The parallelism of P-FIB.n/ is T1.n/=T1.n/ D ‚.!n=n/, which grows dra-

matically as n gets large. Thus, on even the largest parallel computers, a modest

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n (n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n(n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 787

seems to ignore the overhead for recursive spawning in implementing the parallel
loops, however. In fact, the overhead of recursive spawning does increase the work
of a parallel loop compared with that of its serialization, but not asymptotically.
To see why, observe that since the tree of recursive procedure instances is a full
binary tree, the number of internal nodes is 1 fewer than the number of leaves (see
Exercise B.5-3). Each internal node performs constant work to divide the iteration
range, and each leaf corresponds to an iteration of the loop, which takes at least
constant time (‚.n/ time in this case). Thus, we can amortize the overhead of re-
cursive spawning against the work of the iterations, contributing at most a constant
factor to the overall work.

As a practical matter, dynamic-multithreading concurrency platforms sometimes
coarsen the leaves of the recursion by executing several iterations in a single leaf,
either automatically or under programmer control, thereby reducing the overhead
of recursive spawning. This reduced overhead comes at the expense of also reduc-
ing the parallelism, however, but if the computation has sufficient parallel slack-
ness, near-perfect linear speedup need not be sacrificed.

We must also account for the overhead of recursive spawning when analyzing the
span of a parallel-loop construct. Since the depth of recursive calling is logarithmic
in the number of iterations, for a parallel loop with n iterations in which the i th
iteration has span iter1.i/, the span is
T1.n/ D ‚.lg n/C max

1#i#n
iter1.i/ :

For example, for MAT-VEC on an n (n matrix, the parallel initialization loop in
lines 3–4 has span ‚.lg n/, because the recursive spawning dominates the constant-
time work of each iteration. The span of the doubly nested loops in lines 5–7
is ‚.n/, because each iteration of the outer parallel for loop contains n iterations
of the inner (serial) for loop. The span of the remaining code in the procedure
is constant, and thus the span is dominated by the doubly nested loops, yielding
an overall span of ‚.n/ for the whole procedure. Since the work is ‚.n2/, the
parallelism is ‚.n2/=‚.n/ D ‚.n/. (Exercise 27.1-6 asks you to provide an
implementation with even more parallelism.)

Race conditions
A multithreaded algorithm is deterministic if it always does the same thing on the
same input, no matter how the instructions are scheduled on the multicore com-
puter. It is nondeterministic if its behavior might vary from run to run. Often, a
multithreaded algorithm that is intended to be deterministic fails to be, because it
contains a “determinacy race.”

Race conditions are the bane of concurrency. Famous race bugs include the
Therac-25 radiation therapy machine, which killed three people and injured sev-

788 Chapter 27 Multithreaded Algorithms

eral others, and the North American Blackout of 2003, which left over 50 million
people without power. These pernicious bugs are notoriously hard to find. You can
run tests in the lab for days without a failure only to discover that your software
sporadically crashes in the field.

A determinacy race occurs when two logically parallel instructions access the
same memory location and at least one of the instructions performs a write. The
following procedure illustrates a race condition:

RACE-EXAMPLE. /

1 x D 0
2 parallel for i D 1 to 2
3 x D x C 1
4 print x

After initializing x to 0 in line 1, RACE-EXAMPLE creates two parallel strands,
each of which increments x in line 3. Although it might seem that RACE-
EXAMPLE should always print the value 2 (its serialization certainly does), it could
instead print the value 1. Let’s see how this anomaly might occur.

When a processor increments x, the operation is not indivisible, but is composed
of a sequence of instructions:
1. Read x from memory into one of the processor’s registers.
2. Increment the value in the register.
3. Write the value in the register back into x in memory.
Figure 27.5(a) illustrates a computation dag representing the execution of RACE-
EXAMPLE, with the strands broken down to individual instructions. Recall that
since an ideal parallel computer supports sequential consistency, we can view the
parallel execution of a multithreaded algorithm as an interleaving of instructions
that respects the dependencies in the dag. Part (b) of the figure shows the values
in an execution of the computation that elicits the anomaly. The value x is stored
in memory, and r1 and r2 are processor registers. In step 1, one of the processors
sets x to 0. In steps 2 and 3, processor 1 reads x from memory into its register r1

and increments it, producing the value 1 in r1. At that point, processor 2 comes
into the picture, executing instructions 4–6. Processor 2 reads x from memory into
register r2; increments it, producing the value 1 in r2; and then stores this value
into x, setting x to 1. Now, processor 1 resumes with step 7, storing the value 1
in r1 into x, which leaves the value of x unchanged. Therefore, step 8 prints the
value 1, rather than 2, as the serialization would print.

We can see what has happened. If the effect of the parallel execution were that
processor 1 executed all its instructions before processor 2, the value 2 would be

27.1 The basics of dynamic multithreading 789

incr r13

r1 = x2

x = r17

incr r25

r2 = x4

x = r26

x = 01

print x8

(a)

step x r1 r2
1
2
3
4
5
6
7

0
0
0
0
0
1
1

–
0
1
1
1
1
1

–
–
–
0
1
1
1

(b)

Figure 27.5 Illustration of the determinacy race in RACE-EXAMPLE. (a)A computation dag show-
ing the dependencies among individual instructions. The processor registers are r1 and r2. Instruc-
tions unrelated to the race, such as the implementation of loop control, are omitted. (b)An execution
sequence that elicits the bug, showing the values of x in memory and registers r1 and r2 for each
step in the execution sequence.

printed. Conversely, if the effect were that processor 2 executed all its instructions
before processor 1, the value 2 would still be printed. When the instructions of the
two processors execute at the same time, however, it is possible, as in this example
execution, that one of the updates to x is lost.

Of course, many executions do not elicit the bug. For example, if the execution
order were h1; 2; 3; 4; 5; 6; 7; 8i or h1; 4; 5; 6; 2; 3; 7; 8i, we would get the cor-
rect result. That’s the problem with determinacy races. Generally, most orderings
produce correct results—such as any in which the instructions on the left execute
before the instructions on the right, or vice versa. But some orderings generate
improper results when the instructions interleave. Consequently, races can be ex-
tremely hard to test for. You can run tests for days and never see the bug, only to
experience a catastrophic system crash in the field when the outcome is critical.

Although we can cope with races in a variety of ways, including using mutual-
exclusion locks and other methods of synchronization, for our purposes, we shall
simply ensure that strands that operate in parallel are independent: they have no
determinacy races among them. Thus, in a parallel for construct, all the iterations
should be independent. Between a spawn and the corresponding sync, the code
of the spawned child should be independent of the code of the parent, including
code executed by additional spawned or called children. Note that arguments to a
spawned child are evaluated in the parent before the actual spawn occurs, and thus
the evaluation of arguments to a spawned subroutine is in series with any accesses
to those arguments after the spawn.

790 Chapter 27 Multithreaded Algorithms

As an example of how easy it is to generate code with races, here is a faulty
implementation of multithreaded matrix-vector multiplication that achieves a span
of ‚.lg n/ by parallelizing the inner for loop:
MAT-VEC-WRONG.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 parallel for j D 1 to n
7 yi D yi C aij xj

8 return y

This procedure is, unfortunately, incorrect due to races on updating yi in line 7,
which executes concurrently for all n values of j . Exercise 27.1-6 asks you to give
a correct implementation with ‚.lg n/ span.

A multithreaded algorithm with races can sometimes be correct. As an exam-
ple, two parallel threads might store the same value into a shared variable, and it
wouldn’t matter which stored the value first. Generally, however, we shall consider
code with races to be illegal.

A chess lesson
We close this section with a true story that occurred during the development of
the world-class multithreaded chess-playing program ?Socrates [81], although the
timings below have been simplified for exposition. The program was prototyped
on a 32-processor computer but was ultimately to run on a supercomputer with 512
processors. At one point, the developers incorporated an optimization into the pro-
gram that reduced its running time on an important benchmark on the 32-processor
machine from T32 D 65 seconds to T 0

32 D 40 seconds. Yet, the developers used
the work and span performance measures to conclude that the optimized version,
which was faster on 32 processors, would actually be slower than the original ver-
sion on 512 processsors. As a result, they abandoned the “optimization.”

Here is their analysis. The original version of the program had work T1 D 2048
seconds and span T1 D 1 second. If we treat inequality (27.4) as an equation,
TP D T1=P C T1, and use it as an approximation to the running time on P pro-
cessors, we see that indeed T32 D 2048=32 C 1 D 65. With the optimization, the
work became T 0

1 D 1024 seconds and the span became T 0
1 D 8 seconds. Again

using our approximation, we get T 0
32 D 1024=32C 8 D 40.

The relative speeds of the two versions switch when we calculate the running
times on 512 processors, however. In particular, we have T512 D 2048=512C1 D 5

27.1 The basics of dynamic multithreading 791

seconds, and T 0
512 D 1024=512 C 8 D 10 seconds. The optimization that sped up

the program on 32 processors would have made the program twice as slow on 512
processors! The optimized version’s span of 8, which was not the dominant term in
the running time on 32 processors, became the dominant term on 512 processors,
nullifying the advantage from using more processors.

The moral of the story is that work and span can provide a better means of
extrapolating performance than can measured running times.

Exercises
27.1-1
Suppose that we spawn P-FIB.n # 2/ in line 4 of P-FIB, rather than calling it
as is done in the code. What is the impact on the asymptotic work, span, and
parallelism?
27.1-2
Draw the computation dag that results from executing P-FIB.5/. Assuming that
each strand in the computation takes unit time, what are the work, span, and par-
allelism of the computation? Show how to schedule the dag on 3 processors using
greedy scheduling by labeling each strand with the time step in which it is executed.
27.1-3
Prove that a greedy scheduler achieves the following time bound, which is slightly
stronger than the bound proven in Theorem 27.1:

TP "
T1 # T1

P
C T1 : (27.5)

27.1-4
Construct a computation dag for which one execution of a greedy scheduler can
take nearly twice the time of another execution of a greedy scheduler on the same
number of processors. Describe how the two executions would proceed.
27.1-5
Professor Karan measures her deterministic multithreaded algorithm on 4, 10,
and 64 processors of an ideal parallel computer using a greedy scheduler. She
claims that the three runs yielded T4 D 80 seconds, T10 D 42 seconds, and
T64 D 10 seconds. Argue that the professor is either lying or incompetent. (Hint:
Use the work law (27.2), the span law (27.3), and inequality (27.5) from Exer-
cise 27.1-3.)

792 Chapter 27 Multithreaded Algorithms

27.1-6
Give a multithreaded algorithm to multiply an n (n matrix by an n-vector that
achieves ‚.n2= lg n/ parallelism while maintaining ‚.n2/ work.
27.1-7
Consider the following multithreaded pseudocode for transposing an n(n matrix A
in place:
P-TRANSPOSE.A/

1 n D A:rows
2 parallel for j D 2 to n
3 parallel for i D 1 to j # 1
4 exchange aij with aj i

Analyze the work, span, and parallelism of this algorithm.
27.1-8
Suppose that we replace the parallel for loop in line 3 of P-TRANSPOSE (see Ex-
ercise 27.1-7) with an ordinary for loop. Analyze the work, span, and parallelism
of the resulting algorithm.
27.1-9
For how many processors do the two versions of the chess programs run equally
fast, assuming that TP D T1=P C T1?

27.2 Multithreaded matrix multiplication

In this section, we examine how to multithread matrix multiplication, a problem
whose serial running time we studied in Section 4.2. We’ll look at multithreaded
algorithms based on the standard triply nested loop, as well as divide-and-conquer
algorithms.

Multithreaded matrix multiplication
The first algorithm we study is the straighforward algorithm based on parallelizing
the loops in the procedure SQUARE-MATRIX-MULTIPLY on page 75:

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n (n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik & bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n (n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n (n matrices A and B to produce the n (n matrix C ,
relies on partitioning each of the three matrices into four n=2 (n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n(n matrices, we perform eight multiplications of n=2(n=2
matrices and one addition of n(n matrices. The following pseudocode implements

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n (n matrix
5 partition A, B , C , and T into n=2 (n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 (1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 (n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

27.2 Multithreaded matrix multiplication 795

after which we add the products from T into C in using the doubly nested parallel
for loops in lines 15–17.

We first analyze the work M1.n/ of the P-MATRIX-MULTIPLY-RECURSIVE
procedure, echoing the serial running-time analysis of its progenitor SQUARE-
MATRIX-MULTIPLY-RECURSIVE. In the recursive case, we partition in ‚.1/ time,
perform eight recursive multiplications of n=2 (n=2 matrices, and finish up with
the ‚.n2/ work from adding two n (n matrices. Thus, the recurrence for the
work M1.n/ is
M1.n/ D 8M1.n=2/C‚.n2/

D ‚.n3/

by case 1 of the master theorem. In other words, the work of our multithreaded al-
gorithm is asymptotically the same as the running time of the procedure SQUARE-
MATRIX-MULTIPLY in Section 4.2, with its triply nested loops.

To determine the span M1.n/ of P-MATRIX-MULTIPLY-RECURSIVE, we first
observe that the span for partitioning is ‚.1/, which is dominated by the ‚.lg n/
span of the doubly nested parallel for loops in lines 15–17. Because the eight
parallel recursive calls all execute on matrices of the same size, the maximum span
for any recursive call is just the span of any one. Hence, the recurrence for the
span M1.n/ of P-MATRIX-MULTIPLY-RECURSIVE is
M1.n/ DM1.n=2/C‚.lg n/ : (27.7)
This recurrence does not fall under any of the cases of the master theorem, but
it does meet the condition of Exercise 4.6-2. By Exercise 4.6-2, therefore, the
solution to recurrence (27.7) is M1.n/ D ‚.lg2 n/.

Now that we know the work and span of P-MATRIX-MULTIPLY-RECURSIVE,
we can compute its parallelism as M1.n/=M1.n/ D ‚.n3= lg2 n/, which is very
high.

Multithreading Strassen’s method
To multithread Strassen’s algorithm, we follow the same general outline as on
page 79, only using nested parallelism:
1. Divide the input matrices A and B and output matrix C into n=2 (n=2 sub-

matrices, as in equation (27.6). This step takes ‚.1/ work and span by index
calculation.

2. Create 10 matrices S1; S2; : : : ; S10, each of which is n=2 (n=2 and is the sum
or difference of two matrices created in step 1. We can create all 10 matrices
with ‚.n2/ work and ‚.lg n/ span by using doubly nested parallel for loops.

796 Chapter 27 Multithreaded Algorithms

3. Using the submatrices created in step 1 and the 10 matrices created in
step 2, recursively spawn the computation of seven n=2 (n=2 matrix products
P1; P2; : : : ; P7.

4. Compute the desired submatrices C11; C12; C21; C22 of the result matrix C by
adding and subtracting various combinations of the Pi matrices, once again
using doubly nested parallel for loops. We can compute all four submatrices
with ‚.n2/ work and ‚.lg n/ span.

To analyze this algorithm, we first observe that since the serialization is the
same as the original serial algorithm, the work is just the running time of the
serialization, namely, ‚.nlg 7/. As for P-MATRIX-MULTIPLY-RECURSIVE, we
can devise a recurrence for the span. In this case, seven recursive calls exe-
cute in parallel, but since they all operate on matrices of the same size, we ob-
tain the same recurrence (27.7) as we did for P-MATRIX-MULTIPLY-RECURSIVE,
which has solution ‚.lg2 n/. Thus, the parallelism of multithreaded Strassen’s
method is ‚.nlg 7= lg2 n/, which is high, though slightly less than the parallelism
of P-MATRIX-MULTIPLY-RECURSIVE.

Exercises
27.2-1
Draw the computation dag for computing P-SQUARE-MATRIX-MULTIPLY on 2(2
matrices, labeling how the vertices in your diagram correspond to strands in the
execution of the algorithm. Use the convention that spawn and call edges point
downward, continuation edges point horizontally to the right, and return edges
point upward. Assuming that each strand takes unit time, analyze the work, span,
and parallelism of this computation.
27.2-2
Repeat Exercise 27.2-1 for P-MATRIX-MULTIPLY-RECURSIVE.
27.2-3
Give pseudocode for a multithreaded algorithm that multiplies two n (n matrices
with work ‚.n3/ but span only ‚.lg n/. Analyze your algorithm.
27.2-4
Give pseudocode for an efficient multithreaded algorithm that multiplies a p (q
matrix by a q (r matrix. Your algorithm should be highly parallel even if any of
p, q, and r are 1. Analyze your algorithm.

27.3 Multithreaded merge sort 797

27.2-5
Give pseudocode for an efficient multithreaded algorithm that transposes an n (n
matrix in place by using divide-and-conquer to divide the matrix recursively into
four n=2 (n=2 submatrices. Analyze your algorithm.
27.2-6
Give pseudocode for an efficient multithreaded implementation of the Floyd-
Warshall algorithm (see Section 25.2), which computes shortest paths between all
pairs of vertices in an edge-weighted graph. Analyze your algorithm.

27.3 Multithreaded merge sort

We first saw serial merge sort in Section 2.3.1, and in Section 2.3.2 we analyzed its
running time and showed it to be ‚.n lg n/. Because merge sort already uses the
divide-and-conquer paradigm, it seems like a terrific candidate for multithreading
using nested parallelism. We can easily modify the pseudocode so that the first
recursive call is spawned:

MERGE-SORT0.A; p; r/

1 if p < r
2 q D b.p C r/=2c
3 spawn MERGE-SORT 0.A; p; q/
4 MERGE-SORT 0.A; q C 1; r/
5 sync
6 MERGE.A; p; q; r/

Like its serial counterpart, MERGE-SORT 0 sorts the subarray AŒp : : r #. After the
two recursive subroutines in lines 3 and 4 have completed, which is ensured by the
sync statement in line 5, MERGE-SORT 0 calls the same MERGE procedure as on
page 31.

Let us analyze MERGE-SORT 0. To do so, we first need to analyze MERGE. Re-
call that its serial running time to merge n elements is ‚.n/. Because MERGE is
serial, both its work and its span are ‚.n/. Thus, the following recurrence charac-
terizes the work MS0

1.n/ of MERGE-SORT 0 on n elements:
MS0

1.n/ D 2 MS0
1.n=2/C‚.n/

D ‚.n lg n/ ;

798 Chapter 27 Multithreaded Algorithms

… … …

… …
merge mergecopy

p1 q1 r1 p2 q2 r2

p3 q3 r3

A

T

x

x

" x

" x < x

! x

! x ! x

Figure 27.6 The idea behind the multithreaded merging of two sorted subarrays T Œp1 : : r1#
and T Œp2 : : r2# into the subarray AŒp3 : : r3#. Letting x D T Œq1# be the median of T Œp1 : : r1# and q2

be the place in T Œp2 : : r2# such that x would fall between T Œq2 # 1# and T Œq2#, every element in
subarrays T Œp1 : : q1 # 1# and T Œp2 : : q2 # 1# (lightly shaded) is less than or equal to x, and every
element in the subarrays T Œq1C 1 : : r1# and T Œq2C 1 : : r2# (heavily shaded) is at least x. To merge,
we compute the index q3 where x belongs in AŒp3 : : r3#, copy x into AŒq3#, and then recursively
merge T Œp1 : : q1 # 1# with T Œp2 : : q2 # 1# into AŒp3 : : q3 # 1# and T Œq1 C 1 : : r1# with T Œq2 : : r2#
into AŒq3 C 1 : : r3#.

which is the same as the serial running time of merge sort. Since the two recursive
calls of MERGE-SORT0 can run in parallel, the span MS0

1 is given by the recurrence
MS0

1.n/ D MS0
1.n=2/C‚.n/

D ‚.n/ :

Thus, the parallelism of MERGE-SORT0 comes to MS0
1.n/=MS0

1.n/ D ‚.lg n/,
which is an unimpressive amount of parallelism. To sort 10 million elements, for
example, it might achieve linear speedup on a few processors, but it would not
scale up effectively to hundreds of processors.

You probably have already figured out where the parallelism bottleneck is in
this multithreaded merge sort: the serial MERGE procedure. Although merging
might initially seem to be inherently serial, we can, in fact, fashion a multithreaded
version of it by using nested parallelism.

Our divide-and-conquer strategy for multithreaded merging, which is illus-
trated in Figure 27.6, operates on subarrays of an array T . Suppose that we
are merging the two sorted subarrays T Œp1 : : r1# of length n1 D r1 # p1 C 1
and T Œp2 : : r2# of length n2 D r2 # p2 C 1 into another subarray AŒp3 : : r3#, of
length n3 D r3 # p3 C 1 D n1 C n2. Without loss of generality, we make the sim-
plifying assumption that n1 ! n2.

We first find the middle element x D T Œq1# of the subarray T Œp1 : : r1#,
where q1 D b.p1 C r1/=2c. Because the subarray is sorted, x is a median
of T Œp1 : : r1#: every element in T Œp1 : : q1 # 1# is no more than x, and every el-
ement in T Œq1 C 1 : : r1# is no less than x. We then use binary search to find the

27.3 Multithreaded merge sort 799

index q2 in the subarray T Œp2 : : r2# so that the subarray would still be sorted if we
inserted x between T Œq2 # 1# and T Œq2#.

We next merge the original subarrays T Œp1 : : r1# and T Œp2 : : r2# into AŒp3 : : r3#
as follows:
1. Set q3 D p3 C .q1 # p1/C .q2 # p2/.
2. Copy x into AŒq3#.
3. Recursively merge T Œp1 : : q1 #1# with T Œp2 : : q2 #1#, and place the result into

the subarray AŒp3 : : q3 # 1#.
4. Recursively merge T Œq1 C 1 : : r1# with T Œq2 : : r2#, and place the result into the

subarray AŒq3 C 1 : : r3#.
When we compute q3, the quantity q1#p1 is the number of elements in the subarray
T Œp1 : : q1 # 1#, and the quantity q2 # p2 is the number of elements in the subarray
T Œp2 : : q2 # 1#. Thus, their sum is the number of elements that end up before x in
the subarray AŒp3 : : r3#.

The base case occurs when n1 D n2 D 0, in which case we have no work
to do to merge the two empty subarrays. Since we have assumed that the sub-
array T Œp1 : : r1# is at least as long as T Œp2 : : r2#, that is, n1 ! n2, we can check
for the base case by just checking whether n1 D 0. We must also ensure that the
recursion properly handles the case when only one of the two subarrays is empty,
which, by our assumption that n1 ! n2, must be the subarray T Œp2 : : r2#.

Now, let’s put these ideas into pseudocode. We start with the binary search,
which we express serially. The procedure BINARY-SEARCH.x; T; p; r/ takes a
key x and a subarray T Œp : : r #, and it returns one of the following:
! If T Œp : : r # is empty (r < p), then it returns the index p.
! If x " T Œp#, and hence less than or equal to all the elements of T Œp : : r #, then

it returns the index p.
! If x > T Œp#, then it returns the largest index q in the range p < q " rC1 such

that T Œq # 1# < x.
Here is the pseudocode:
BINARY-SEARCH.x; T; p; r/

1 low D p
2 high D max.p; r C 1/
3 while low < high
4 mid D b.lowC high/=2c
5 if x " T Œmid#
6 high D mid
7 else low D midC 1
8 return high

800 Chapter 27 Multithreaded Algorithms

The call BINARY-SEARCH.x; T; p; r/ takes ‚.lg n/ serial time in the worst case,
where n D r # p C 1 is the size of the subarray on which it runs. (See Exer-
cise 2.3-5.) Since BINARY-SEARCH is a serial procedure, its worst-case work and
span are both ‚.lg n/.

We are now prepared to write pseudocode for the multithreaded merging pro-
cedure itself. Like the MERGE procedure on page 31, the P-MERGE procedure
assumes that the two subarrays to be merged lie within the same array. Un-
like MERGE, however, P-MERGE does not assume that the two subarrays to
be merged are adjacent within the array. (That is, P-MERGE does not require
that p2 D r1 C 1.) Another difference between MERGE and P-MERGE is that
P-MERGE takes as an argument an output subarray A into which the merged val-
ues should be stored. The call P-MERGE.T; p1; r1; p2; r2; A; p3/ merges the sorted
subarrays T Œp1 : : r1# and T Œp2 : : r2# into the subarray AŒp3 : : r3#, where r3 D
p3 C .r1 # p1 C 1/C .r2 # p2 C 1/ # 1 D p3 C .r1 # p1/C .r2 # p2/C 1 and
is not provided as an input.

P-MERGE.T; p1; r1; p2; r2; A; p3/

1 n1 D r1 # p1 C 1
2 n2 D r2 # p2 C 1
3 if n1 < n2 // ensure that n1 ! n2

4 exchange p1 with p2

5 exchange r1 with r2

6 exchange n1 with n2

7 if n1 == 0 // both empty?
8 return
9 else q1 D b.p1 C r1/=2c

10 q2 D BINARY-SEARCH.T Œq1#; T; p2; r2/
11 q3 D p3 C .q1 # p1/C .q2 # p2/
12 AŒq3# D T Œq1#
13 spawn P-MERGE.T; p1; q1 # 1; p2; q2 # 1; A; p3/
14 P-MERGE.T; q1 C 1; r1; q2; r2; A; q3 C 1/
15 sync

The P-MERGE procedure works as follows. Lines 1–2 compute the lengths n1

and n2 of the subarrays T Œp1 : : r1# and T Œp2 : : r2#, respectively. Lines 3–6 en-
force the assumption that n1 ! n2. Line 7 tests for the base case, where the
subarray T Œp1 : : r1# is empty (and hence so is T Œp2 : : r2#), in which case we sim-
ply return. Lines 9–15 implement the divide-and-conquer strategy. Line 9 com-
putes the midpoint of T Œp1 : : r1#, and line 10 finds the point q2 in T Œp2 : : r2# such
that all elements in T Œp2 : : q2 # 1# are less than T Œq1# (which corresponds to x)
and all the elements in T Œq2 : : p2# are at least as large as T Œq1#. Line 11 com-

27.3 Multithreaded merge sort 801

putes the index q3 of the element that divides the output subarray AŒp3 : : r3# into
AŒp3 : : q3 # 1# and AŒq3C1 : : r3#, and then line 12 copies T Œq1# directly into AŒq3#.

Then, we recurse using nested parallelism. Line 13 spawns the first subproblem,
while line 14 calls the second subproblem in parallel. The sync statement in line 15
ensures that the subproblems have completed before the procedure returns. (Since
every procedure implicitly executes a sync before returning, we could have omitted
the sync statement in line 15, but including it is good coding practice.) There
is some cleverness in the coding to ensure that when the subarray T Œp2 : : r2# is
empty, the code operates correctly. The way it works is that on each recursive call,
a median element of T Œp1 : : r1# is placed into the output subarray, until T Œp1 : : r1#
itself finally becomes empty, triggering the base case.

Analysis of multithreaded merging
We first derive a recurrence for the span PM1.n/ of P-MERGE, where the two
subarrays contain a total of n D n1Cn2 elements. Because the spawn in line 13 and
the call in line 14 operate logically in parallel, we need examine only the costlier of
the two calls. The key is to understand that in the worst case, the maximum number
of elements in either of the recursive calls can be at most 3n=4, which we see as
follows. Because lines 3–6 ensure that n2 " n1, it follows that n2 D 2n2=2 "
.n1 C n2/=2 D n=2. In the worst case, one of the two recursive calls merges
bn1=2c elements of T Œp1 : : r1# with all n2 elements of T Œp2 : : r2#, and hence the
number of elements involved in the call is
bn1=2c C n2 " n1=2C n2=2C n2=2

D .n1 C n2/=2C n2=2

" n=2C n=4

D 3n=4 :

Adding in the ‚.lg n/ cost of the call to BINARY-SEARCH in line 10, we obtain
the following recurrence for the worst-case span:
PM1.n/ D PM1.3n=4/C‚.lg n/ : (27.8)
(For the base case, the span is ‚.1/, since lines 1–8 execute in constant time.)
This recurrence does not fall under any of the cases of the master theorem, but it
meets the condition of Exercise 4.6-2. Therefore, the solution to recurrence (27.8)
is PM1.n/ D ‚.lg2 n/.

We now analyze the work PM1.n/ of P-MERGE on n elements, which turns out
to be ‚.n/. Since each of the n elements must be copied from array T to array A,
we have PM1.n/ D $.n/. Thus, it remains only to show that PM1.n/ D O.n/.

We shall first derive a recurrence for the worst-case work. The binary search in
line 10 costs ‚.lg n/ in the worst case, which dominates the other work outside

802 Chapter 27 Multithreaded Algorithms

of the recursive calls. For the recursive calls, observe that although the recursive
calls in lines 13 and 14 might merge different numbers of elements, together the
two recursive calls merge at most n elements (actually n # 1 elements, since T Œq1#
does not participate in either recursive call). Moreover, as we saw in analyzing the
span, a recursive call operates on at most 3n=4 elements. We therefore obtain the
recurrence
PM1.n/ D PM1.˛n/C PM1..1 # ˛/n/CO.lg n/ ; (27.9)
where ˛ lies in the range 1=4 " ˛ " 3=4, and where we understand that the actual
value of ˛ may vary for each level of recursion.

We prove that recurrence (27.9) has solution PM1 D O.n/ via the substitution
method. Assume that PM1.n/ " c1n#c2 lg n for some positive constants c1 and c2.
Substituting gives us
PM1.n/ " .c1˛n # c2 lg.˛n//C .c1.1 # ˛/n # c2 lg..1 # ˛/n//C‚.lg n/

D c1.˛ C .1 # ˛//n # c2.lg.˛n/C lg..1 # ˛/n//C‚.lg n/

D c1n # c2.lg ˛ C lg nC lg.1 # ˛/C lg n/C‚.lg n/

D c1n # c2 lg n # .c2.lg nC lg.˛.1 # ˛/// # ‚.lg n//

" c1n # c2 lg n ;

since we can choose c2 large enough that c2.lg n C lg.˛.1 # ˛/// dominates the
‚.lg n/ term. Furthermore, we can choose c1 large enough to satisfy the base
conditions of the recurrence. Since the work PM1.n/ of P-MERGE is both $.n/
and O.n/, we have PM1.n/ D ‚.n/.

The parallelism of P-MERGE is PM1.n/=PM1.n/ D ‚.n= lg2 n/.

Multithreaded merge sort
Now that we have a nicely parallelized multithreaded merging procedure, we can
incorporate it into a multithreaded merge sort. This version of merge sort is similar
to the MERGE-SORT 0 procedure we saw earlier, but unlike MERGE-SORT 0, it takes
as an argument an output subarray B , which will hold the sorted result. In par-
ticular, the call P-MERGE-SORT.A; p; r; B; s/ sorts the elements in AŒp : : r # and
stores them in BŒs : : s C r # p#.

27.3 Multithreaded merge sort 803

P-MERGE-SORT.A; p; r; B; s/

1 n D r # p C 1
2 if n == 1
3 BŒs# D AŒp#
4 else let T Œ1 : : n# be a new array
5 q D b.p C r/=2c
6 q0 D q # p C 1
7 spawn P-MERGE-SORT.A; p; q; T; 1/
8 P-MERGE-SORT.A; q C 1; r; T; q0 C 1/
9 sync

10 P-MERGE.T; 1; q0; q0 C 1; n; B; s/

After line 1 computes the number n of elements in the input subarray AŒp : : r #,
lines 2–3 handle the base case when the array has only 1 element. Lines 4–6 set
up for the recursive spawn in line 7 and call in line 8, which operate in parallel. In
particular, line 4 allocates a temporary array T with n elements to store the results
of the recursive merge sorting. Line 5 calculates the index q of AŒp : : r # to divide
the elements into the two subarrays AŒp : : q# and AŒq C 1 : : r # that will be sorted
recursively, and line 6 goes on to compute the number q0 of elements in the first
subarray AŒp : : q#, which line 8 uses to determine the starting index in T of where
to store the sorted result of AŒq C 1 : : r #. At that point, the spawn and recursive
call are made, followed by the sync in line 9, which forces the procedure to wait
until the spawned procedure is done. Finally, line 10 calls P-MERGE to merge
the sorted subarrays, now in T Œ1 : : q0# and T Œq0 C 1 : : n#, into the output subarray
BŒs : : s C r # p#.

Analysis of multithreaded merge sort
We start by analyzing the work PMS1.n/ of P-MERGE-SORT, which is consider-
ably easier than analyzing the work of P-MERGE. Indeed, the work is given by the
recurrence
PMS1.n/ D 2 PMS1.n=2/C PM1.n/

D 2 PMS1.n=2/C‚.n/ :

This recurrence is the same as the recurrence (4.4) for ordinary MERGE-SORT
from Section 2.3.1 and has solution PMS1.n/ D ‚.n lg n/ by case 2 of the master
theorem.

We now derive and analyze a recurrence for the worst-case span PMS1.n/. Be-
cause the two recursive calls to P-MERGE-SORT on lines 7 and 8 operate logically
in parallel, we can ignore one of them, obtaining the recurrence

804 Chapter 27 Multithreaded Algorithms

PMS1.n/ D PMS1.n=2/C PM1.n/

D PMS1.n=2/C‚.lg2 n/ : (27.10)
As for recurrence (27.8), the master theorem does not apply to recurrence (27.10),
but Exercise 4.6-2 does. The solution is PMS1.n/ D ‚.lg3 n/, and so the span of
P-MERGE-SORT is ‚.lg3 n/.

Parallel merging gives P-MERGE-SORT a significant parallelism advantage over
MERGE-SORT 0. Recall that the parallelism of MERGE-SORT 0, which calls the se-
rial MERGE procedure, is only ‚.lg n/. For P-MERGE-SORT, the parallelism is
PMS1.n/=PMS1.n/ D ‚.n lg n/=‚.lg3 n/

D ‚.n= lg2 n/ ;

which is much better both in theory and in practice. A good implementation in
practice would sacrifice some parallelism by coarsening the base case in order to
reduce the constants hidden by the asymptotic notation. The straightforward way
to coarsen the base case is to switch to an ordinary serial sort, perhaps quicksort,
when the size of the array is sufficiently small.

Exercises
27.3-1
Explain how to coarsen the base case of P-MERGE.
27.3-2
Instead of finding a median element in the larger subarray, as P-MERGE does, con-
sider a variant that finds a median element of all the elements in the two sorted
subarrays using the result of Exercise 9.3-8. Give pseudocode for an efficient
multithreaded merging procedure that uses this median-finding procedure. Ana-
lyze your algorithm.
27.3-3
Give an efficient multithreaded algorithm for partitioning an array around a pivot,
as is done by the PARTITION procedure on page 171. You need not partition the ar-
ray in place. Make your algorithm as parallel as possible. Analyze your algorithm.
(Hint: You may need an auxiliary array and may need to make more than one pass
over the input elements.)
27.3-4
Give a multithreaded version of RECURSIVE-FFT on page 911. Make your imple-
mentation as parallel as possible. Analyze your algorithm.

Problems for Chapter 27 805

27.3-5 ?
Give a multithreaded version of RANDOMIZED-SELECT on page 216. Make your
implementation as parallel as possible. Analyze your algorithm. (Hint: Use the
partitioning algorithm from Exercise 27.3-3.)
27.3-6 ?
Show how to multithread SELECT from Section 9.3. Make your implementation as
parallel as possible. Analyze your algorithm.

Problems

27-1 Implementing parallel loops using nested parallelism
Consider the following multithreaded algorithm for performing pairwise addition
on n-element arrays AŒ1 : : n# and BŒ1 : : n#, storing the sums in C Œ1 : : n#:

SUM-ARRAYS.A; B; C /

1 parallel for i D 1 to A: length
2 C Œi # D AŒi #C BŒi #

a. Rewrite the parallel loop in SUM-ARRAYS using nested parallelism (spawn
and sync) in the manner of MAT-VEC-MAIN-LOOP. Analyze the parallelism
of your implementation.

Consider the following alternative implementation of the parallel loop, which
contains a value grain-size to be specified:

SUM-ARRAYS0.A; B; C /

1 n D A: length
2 grain-size D ‹ // to be determined
3 r D dn=grain-sizee
4 for k D 0 to r # 1
5 spawn ADD-SUBARRAY.A; B; C; k & grain-sizeC 1;

min..k C 1/ & grain-size; n//
6 sync

ADD-SUBARRAY.A; B; C; i; j /

1 for k D i to j
2 C Œk# D AŒk#C BŒk#

806 Chapter 27 Multithreaded Algorithms

b. Suppose that we set grain-size D 1. What is the parallelism of this implemen-
tation?

c. Give a formula for the span of SUM-ARRAYS0 in terms of n and grain-size.
Derive the best value for grain-size to maximize parallelism.

27-2 Saving temporary space in matrix multiplication
The P-MATRIX-MULTIPLY-RECURSIVE procedure has the disadvantage that it
must allocate a temporary matrix T of size n (n, which can adversely affect the
constants hidden by the ‚-notation. The P-MATRIX-MULTIPLY-RECURSIVE pro-
cedure does have high parallelism, however. For example, ignoring the constants
in the ‚-notation, the parallelism for multiplying 1000 (1000 matrices comes to
approximately 10003=102 D 107, since lg 1000 ' 10. Most parallel computers
have far fewer than 10 million processors.
a. Describe a recursive multithreaded algorithm that eliminates the need for the

temporary matrix T at the cost of increasing the span to ‚.n/. (Hint: Com-
pute C D C C AB following the general strategy of P-MATRIX-MULTIPLY-
RECURSIVE, but initialize C in parallel and insert a sync in a judiciously cho-
sen location.)

b. Give and solve recurrences for the work and span of your implementation.
c. Analyze the parallelism of your implementation. Ignoring the constants in the

‚-notation, estimate the parallelism on 1000 (1000 matrices. Compare with
the parallelism of P-MATRIX-MULTIPLY-RECURSIVE.

27-3 Multithreaded matrix algorithms
a. Parallelize the LU-DECOMPOSITION procedure on page 821 by giving pseu-

docode for a multithreaded version of this algorithm. Make your implementa-
tion as parallel as possible, and analyze its work, span, and parallelism.

b. Do the same for LUP-DECOMPOSITION on page 824.
c. Do the same for LUP-SOLVE on page 817.
d. Do the same for a multithreaded algorithm based on equation (28.13) for in-

verting a symmetric positive-definite matrix.

Problems for Chapter 27 807

27-4 Multithreading reductions and prefix computations
A ˝-reduction of an array xŒ1 : : n#, where˝ is an associative operator, is the value
y D xŒ1#˝ xŒ2#˝ & & &˝ xŒn# :

The following procedure computes the˝-reduction of a subarray xŒi : : j # serially.

REDUCE.x; i; j /

1 y D xŒi #
2 for k D i C 1 to j
3 y D y ˝ xŒk#
4 return y

a. Use nested parallelism to implement a multithreaded algorithm P-REDUCE,
which performs the same function with ‚.n/ work and ‚.lg n/ span. Analyze
your algorithm.

A related problem is that of computing a ˝-prefix computation, sometimes
called a ˝-scan, on an array xŒ1 : : n#, where ˝ is once again an associative op-
erator. The ˝-scan produces the array yŒ1 : : n# given by
yŒ1# D xŒ1# ;

yŒ2# D xŒ1#˝ xŒ2# ;

yŒ3# D xŒ1#˝ xŒ2#˝ xŒ3# ;
:::

yŒn# D xŒ1#˝ xŒ2#˝ xŒ3#˝ & & &˝ xŒn# ;

that is, all prefixes of the array x “summed” using the ˝ operator. The following
serial procedure SCAN performs a˝-prefix computation:

SCAN.x/

1 n D x: length
2 let yŒ1 : : n# be a new array
3 yŒ1# D xŒ1#
4 for i D 2 to n
5 yŒi # D yŒi # 1#˝ xŒi #
6 return y

Unfortunately, multithreading SCAN is not straightforward. For example, changing
the for loop to a parallel for loop would create races, since each iteration of the
loop body depends on the previous iteration. The following procedure P-SCAN-1
performs the˝-prefix computation in parallel, albeit inefficiently:

808 Chapter 27 Multithreaded Algorithms

P-SCAN-1.x/

1 n D x: length
2 let yŒ1 : : n# be a new array
3 P-SCAN-1-AUX.x; y; 1; n/
4 return y

P-SCAN-1-AUX.x; y; i; j /

1 parallel for l D i to j
2 yŒl # D P-REDUCE.x; 1; l/

b. Analyze the work, span, and parallelism of P-SCAN-1.
By using nested parallelism, we can obtain a more efficient ˝-prefix computa-

tion:

P-SCAN-2.x/

1 n D x: length
2 let yŒ1 : : n# be a new array
3 P-SCAN-2-AUX.x; y; 1; n/
4 return y

P-SCAN-2-AUX.x; y; i; j /

1 if i == j
2 yŒi # D xŒi #
3 else k D b.i C j /=2c
4 spawn P-SCAN-2-AUX.x; y; i; k/
5 P-SCAN-2-AUX.x; y; k C 1; j /
6 sync
7 parallel for l D k C 1 to j
8 yŒl # D yŒk#˝ yŒl #

c. Argue that P-SCAN-2 is correct, and analyze its work, span, and parallelism.
We can improve on both P-SCAN-1 and P-SCAN-2 by performing the ˝-prefix

computation in two distinct passes over the data. On the first pass, we gather the
terms for various contiguous subarrays of x into a temporary array t , and on the
second pass we use the terms in t to compute the final result y. The following
pseudocode implements this strategy, but certain expressions have been omitted:

Problems for Chapter 27 809

P-SCAN-3.x/

1 n D x: length
2 let yŒ1 : : n# and t Œ1 : : n# be new arrays
3 yŒ1# D xŒ1#
4 if n > 1
5 P-SCAN-UP.x; t; 2; n/
6 P-SCAN-DOWN.xŒ1#; x; t; y; 2; n/
7 return y

P-SCAN-UP.x; t; i; j /

1 if i == j
2 return xŒi #
3 else
4 k D b.i C j /=2c
5 t Œk# D spawn P-SCAN-UP.x; t; i; k/
6 right D P-SCAN-UP.x; t; k C 1; j /
7 sync
8 return // fill in the blank
P-SCAN-DOWN."; x; t; y; i; j /

1 if i == j
2 yŒi # D " ˝ xŒi #
3 else
4 k D b.i C j /=2c
5 spawn P-SCAN-DOWN. ; x; t; y; i; k/ // fill in the blank
6 P-SCAN-DOWN. ; x; t; y; k C 1; j / // fill in the blank
7 sync
d. Fill in the three missing expressions in line 8 of P-SCAN-UP and lines 5 and 6

of P-SCAN-DOWN. Argue that with expressions you supplied, P-SCAN-3 is
correct. (Hint: Prove that the value " passed to P-SCAN-DOWN."; x; t; y; i; j /
satisfies " D xŒ1#˝ xŒ2#˝ & & &˝ xŒi # 1#.)

e. Analyze the work, span, and parallelism of P-SCAN-3.

27-5 Multithreading a simple stencil calculation
Computational science is replete with algorithms that require the entries of an array
to be filled in with values that depend on the values of certain already computed
neighboring entries, along with other information that does not change over the
course of the computation. The pattern of neighboring entries does not change
during the computation and is called a stencil. For example, Section 15.4 presents

810 Chapter 27 Multithreaded Algorithms

a stencil algorithm to compute a longest common subsequence, where the value in
entry cŒi; j # depends only on the values in cŒi #1; j #, cŒi; j #1#, and cŒi #1; j #1#,
as well as the elements xi and yj within the two sequences given as inputs. The
input sequences are fixed, but the algorithm fills in the two-dimensional array c so
that it computes entry cŒi; j # after computing all three entries cŒi #1; j #, cŒi; j #1#,
and cŒi # 1; j # 1#.

In this problem, we examine how to use nested parallelism to multithread a
simple stencil calculation on an n (n array A in which, of the values in A, the
value placed into entry AŒi; j # depends only on values in AŒi 0; j 0#, where i 0 " i
and j 0 " j (and of course, i 0 ¤ i or j 0 ¤ j). In other words, the value in an
entry depends only on values in entries that are above it and/or to its left, along
with static information outside of the array. Furthermore, we assume throughout
this problem that once we have filled in the entries upon which AŒi; j # depends, we
can fill in AŒi; j # in ‚.1/ time (as in the LCS-LENGTH procedure of Section 15.4).

We can partition the n (n array A into four n=2 (n=2 subarrays as follows:

A D
!

A11 A12

A21 A22

"
: (27.11)

Observe now that we can fill in subarray A11 recursively, since it does not depend
on the entries of the other three subarrays. Once A11 is complete, we can continue
to fill in A12 and A21 recursively in parallel, because although they both depend
on A11, they do not depend on each other. Finally, we can fill in A22 recursively.
a. Give multithreaded pseudocode that performs this simple stencil calculation

using a divide-and-conquer algorithm SIMPLE-STENCIL based on the decom-
position (27.11) and the discussion above. (Don’t worry about the details of the
base case, which depends on the specific stencil.) Give and solve recurrences
for the work and span of this algorithm in terms of n. What is the parallelism?

b. Modify your solution to part (a) to divide an n (n array into nine n=3 (n=3
subarrays, again recursing with as much parallelism as possible. Analyze this
algorithm. How much more or less parallelism does this algorithm have com-
pared with the algorithm from part (a)?

c. Generalize your solutions to parts (a) and (b) as follows. Choose an integer
b ! 2. Divide an n(n array into b2 subarrays, each of size n=b(n=b, recursing
with as much parallelism as possible. In terms of n and b, what are the work,
span, and parallelism of your algorithm? Argue that, using this approach, the
parallelism must be o.n/ for any choice of b ! 2. (Hint: For this last argument,
show that the exponent of n in the parallelism is strictly less than 1 for any
choice of b ! 2.)

Notes for Chapter 27 811

d. Give pseudocode for a multithreaded algorithm for this simple stencil calcu-
lation that achieves ‚.n= lg n/ parallelism. Argue using notions of work and
span that the problem, in fact, has ‚.n/ inherent parallelism. As it turns out,
the divide-and-conquer nature of our multithreaded pseudocode does not let us
achieve this maximal parallelism.

27-6 Randomized multithreaded algorithms
Just as with ordinary serial algorithms, we sometimes want to implement random-
ized multithreaded algorithms. This problem explores how to adapt the various
performance measures in order to handle the expected behavior of such algorithms.
It also asks you to design and analyze a multithreaded algorithm for randomized
quicksort.
a. Explain how to modify the work law (27.2), span law (27.3), and greedy sched-

uler bound (27.4) to work with expectations when TP , T1, and T1 are all ran-
dom variables.

b. Consider a randomized multithreaded algorithm for which 1% of the time we
have T1 D 104 and T10;000 D 1, but for 99% of the time we have T1 D
T10;000 D 109. Argue that the speedup of a randomized multithreaded algo-
rithm should be defined as E ŒT1# =E ŒTP #, rather than E ŒT1=TP #.

c. Argue that the parallelism of a randomized multithreaded algorithm should be
defined as the ratio E ŒT1# =E ŒT1#.

d. Multithread the RANDOMIZED-QUICKSORT algorithm on page 179 by using
nested parallelism. (Do not parallelize RANDOMIZED-PARTITION.) Give the
pseudocode for your P-RANDOMIZED-QUICKSORT algorithm.

e. Analyze your multithreaded algorithm for randomized quicksort. (Hint: Re-
view the analysis of RANDOMIZED-SELECT on page 216.)

Chapter notes

Parallel computers, models for parallel computers, and algorithmic models for par-
allel programming have been around in various forms for years. Prior editions of
this book included material on sorting networks and the PRAM (Parallel Random-
Access Machine) model. The data-parallel model [48, 168] is another popular al-
gorithmic programming model, which features operations on vectors and matrices
as primitives.

812 Chapter 27 Multithreaded Algorithms

Graham [149] and Brent [56] showed that there exist schedulers achieving the
bound of Theorem 27.1, and Blumofe and Leiserson [52] showed that any greedy
scheduler achieves the bound. Blelloch [47] developed an algorithmic program-
ming model based on work and span (which he called the “depth” of the com-
putation) for data-parallel programming. Blumofe and Leiserson [53] gave a dis-
tributed scheduling algorithm for dynamic multithreading based on randomized
“work-stealing” and showed that it achieves the bound E ŒTP # " T1=P CO.T1/.
Arora, Blumofe, and Plaxton [19] and Blelloch, Gibbons, and Matias [49] also
provided provably good algorithms for scheduling dynamic multithreaded compu-
tations.

The multithreaded pseudocode and programming model were heavily influenced
by the Cilk [51, 118] project at MIT and the Cilk++ [72] extensions to C++ dis-
tributed by Cilk Arts, Inc. Many of the multithreaded algorithms in this chapter
appeared in unpublished lecture notes by C. E. Leiserson and H. Prokop and have
been implemented in Cilk or Cilk++. The multithreaded merge-sorting algorithm
was inspired by an algorithm of Akl [12].

The notion of sequential consistency is due to Lamport [223].

