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Course Overview

• Goal
⁃ Introduction to the cutting-edge research on combining reasoning and machine learning
⁃ Understand relevant techniques and learn to use the state-of-the-art tools
⁃ With a special focus on symbolic constraints solving and programming applications

• Prerequisites
⁃ CSC373H1 Algorithm Design, Analysis & Complexity
⁃ CSC324H1 Principles of Programming Languages
⁃ CSC311H1 Introduction to Machine Learning

• Evaluation
⁃ Class participation (10%): attendance, in-class/online discussions
⁃ One Assignment (15%): “solver-aided” programming
⁃ Paper presentation + QAs (15%):  15-minute presentation by every student
⁃ Project (proposal 15%, presentation 20%, report 25%): up to 4 students/group
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Course Structure and Schedule

• Week 1-3: Intro to reasoning challenges 
⁃ SAT (week 1), SMT (week 2), Program Analysis & Synthesis (week 3)

• Week 4-10: Paper presentations (~8 per week)
⁃ Week 4: Machine learning for SAT
⁃ Week 5: Machine learning for SMT
⁃ Week 6: Formal methods for machine learning
⁃ Week 7: Classic machine learning for code
⁃ Week 8: Deep learning for code
⁃ Week 9: Deep learning and logic programming
⁃ Week 10: Neuro-symbolic systems

• Week 11-12: Project presentations
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Presentation guidelines

• Preparation
⁃ Start as early as possible (at least two weeks in advance)

v Check the course schedule: https://www.cs.toronto.edu/~six/csc-2547hs-w23.html

v Make a post on Ed and indicate which paper you would like to present

⁃ Meet TA and ask for feedback (at least one week in advance)
⁃ Prepare a video recording (before the class)

• Content
⁃ Background

⁃ Problem & challenges

⁃ Main idea
⁃ Main results + demo (bonus)

⁃ Related/future work

• Tips
⁃ Clarity is most important (an obscure and confusing presentation is meaningless)

⁃ Your main goal is to teach others something cool from the selected paper
⁃ A big plus is to inspire others and yourself through your presentation
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Logistics

• Office Hours
⁃ Instructor, Tuesday, 3 PM – 4 PM, BA 7072
⁃ TAs, 2 hours/week 
⁃ Or by appointment

• Online Discussions
⁃ Ed
⁃ Ideally, all questions should go to Ed. Your post can be private if needed. 

• Late submission policy
⁃ 15% off / day

• No plagiarism (absolutely)
⁃ Plagiarism detection software will be used

• No eating, drinking, etc. in class
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Supplemental Textbooks
• No need to buy any
⁃ Recommended by not required

⁃ You can find (free) online copies
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Instructor and TAs

• Instructor: Xujie Si
⁃ Assistant Professor 

v UofT: 2023 – now

v McGill/Mila: 2021–22

⁃ PhD from UPenn (2020)
⁃ Homepage: https://www.cs.toronto.edu/~six/index.html

• Office: BA 7202

• Research interests:
⁃ PL: Program analysis, synthesis & verification
⁃ AI: Symbolic constraint solving, deep learning, neuro-symbolic systems
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Intro - Jonathan Lorraine

● 4th year PhD candidate in machine learning group
● Advised by David Duvenaud
● Did MScAC at U of T beforehand

● My research focuses on nested optimization in Machine Learning
○ Hyperparameter optimization, learning in games, amortized optimization, …

● Homepage for more: https://www.cs.toronto.edu/~lorraine/ 



TA Intro: Zhaoyu Li

• 2nd year PhD student
⁃ Spent 1st year at McGill / Mila

⁃ Bachelor degree from Shanghai Jiao Tong University

• Research Interests
⁃ Neuro-symbolic learning and reasoning

⁃ Automated theorem proving

• Homepage
⁃ https://www.zhaoyu-li.com/
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Some caveats (before we have fun) …

• Lots of paper reading
⁃ 60+ research papers (see the tentative schedule)
⁃ Most are quite technical (you are required to read at least one carefully and deeply)

• Lots of “hacking” (in different languages)
⁃ Hand-on experiences of using/building/analyzing solvers
⁃ Kind of data scientist + system programming experts

• Some necessary skills/traits
⁃ Strong desire to learn new things (no one can force you to learn if you don’t want to)
⁃ Don’t be afraid of exotic notations (they are just notations, the ideas behind are essential)
⁃ Understand things with unknowns
⁃ Learn to read quickly (by ignoring some details)
⁃ Learn to debug complicated systems (by abstracting away certain details)
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What is intelligence?

Look like human?
Can compute fast?

Compute faster?
fastest?

Can differentiate cats from dogs?

Can drive?
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What is Intelligence? (Cont.)
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ARTIFICIAL 
GENERAL 
INTELLIGENCE

Human Intelligence, Animal Intelligence, 
Machine Intelligence, Alien Intelligence, 
you-name-it, …

Which one is the strongest (so far)?

Which one will be the strongest?
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Human Brain vs Turing Machine

No computers can be more powerful than a 
Universal Turing Machine

After billion years of evolution, the universe 
produces intelligent brains
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Penrose’s 
three worlds 
philosophy
• Brain is fully determined by 

physics laws

• Physics laws are fully 
described by Math

• Math is created(?) by brain
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Hardness Measure: NP-Complete, Undecidability

• NP-complete (proudly originated from UofT)
⁃ Nondeterministic Turing machine
⁃ Polynomial-time complete
⁃ A solution can be checked in polynomial time (on a deterministic Turing machine)
⁃ 3-SAT is the first well-known NP-complete problem (Cook, 1971)

• Undecidability
⁃ Impossible to construct an algorithm that always leads to yes-or-no answer
⁃ Regardless how long the algorithm may return
⁃ Halting problem is the first well-known undecidable problem
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Main Progress: Heuristics + Engineering

Figure Credit: Armin Biere
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WHY DOES IT 
MATTER?
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IMPORTANT 
APPLICATIONS 
IN EDA
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A Killer Application: Software Verification

SAT solver
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NOT JUST 
WINDOWS…

Shortly after the first successful moon 
landing, Dijkstra spoke to the head of 
development for the module software:

"How did you produce so many lines of 
perfect code?"

"Huh? We had a bug a few days before 
launch, it accidentally calculated the moon 
as repelling rather than attracting.”

"Wow! Those guys were lucky to make it 
alive, then!"
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Cannot be always lucky …
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Got a speeding 
ticket??

It is kilometer NOT 
mile!!



Hard to be perfect, but statistics helps
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Learn/synthesize small code
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Stochastic Superoptimization

Eric Schkufza
Stanford University

eschkufz@cs.stanford.edu

Rahul Sharma
Stanford University

sharmar@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract
We formulate the loop-free binary superoptimization task as a
stochastic search problem. The competing constraints of transfor-
mation correctness and performance improvement are encoded as
terms in a cost function, and a Markov Chain Monte Carlo sampler
is used to rapidly explore the space of all possible programs to find
one that is an optimization of a given target program. Although our
method sacrifices completeness, the scope of programs we are able
to consider, and the resulting quality of the programs that we pro-
duce, far exceed those of existing superoptimizers. Beginning from
binaries compiled by llvm -O0 for 64-bit x86, our prototype im-
plementation, STOKE, is able to produce programs which either
match or outperform the code produced by gcc -O3, icc -O3,
and in some cases, expert handwritten assembly.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program Synthesis; D.1.2 [Automatic Programming]: Pro-
gram Transformation; D.1.2 [Automatic Programming]: Program
Verification; D.3.4 [Processors]: Optimization

General Terms Performance, Verification

Keywords 64-bit; x86; x86-64; Binary; Markov Chain Monte
Carlo; MCMC; Stochastic Search; Superoptimization; SMT

1. Introduction
For many application domains there is considerable value in pro-
ducing the most performant code possible. Unfortunately, the tradi-
tional structure of a compiler’s optimization phase is often ill-suited
to this task. Attempting to factor the optimization problem into a
collection of small subproblems that can be solved independently,
although suitable for generating consistently good code, leads to
the well-known phase ordering problem. In many cases, the best
possible code can only be obtained through the simultaneous con-
sideration of mutually dependent issues such as instruction selec-
tion, register allocation, and target-dependent optimization.

Previous approaches to this problem have focused on the ex-
ploration of all possibilities within some limited class of programs.
In contrast to a traditional compiler, which uses performance con-
straints to drive the generation of a single program, these systems
consider multiple programs and then select the one that is best
able to satisfy those constraints. Solutions range from the explicit
enumeration of a class of programs that can be formed using a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

[r8:rdi] = rsi * [ecx:edx] + r8 + rdi

1 # gcc -O3 1 # STOKE
2 2
3 .L0: 3 .L0:
4 movq rsi, r9 4 shlq 32, rcx
5 movl ecx, ecx 5 movl edx, edx
6 shrq 32, rsi 6 xorq rdx, rcx
7 andl 0xffffffff, r9d 7 movq rcx, rax
8 movq rcx, rax 8 mulq rsi
9 movl edx, edx 9 addq r8, rdi

10 imulq r9, rax 10 adcq 0, rdx
11 imulq rdx, r9 11 addq rdi, rax
12 imulq rsi, rdx 12 adcq 0, rdx
13 imulq rsi, rcx 13 movq rdx, r8
14 addq rdx, rax 14 movq rax, rdi
15 jae .L2
16 movabsq 0x100000000, rdx
17 addq rdx, rcx
18 .L2:
19 movq rax, rsi
20 movq rax, rdx
21 shrq 32, rsi
22 salq 32, rdx
23 addq rsi, rcx
24 addq r9, rdx
25 adcq 0, rcx
26 addq r8, rdx
27 adcq 0, rcx
28 addq rdi, rdx
29 adcq 0, rcx
30 movq rcx, r8
31 movq rdx, rdi

Figure 1. Montgomery multiplication kernel from the OpenSSL
big number library, compiled by gcc -O3 (left) and STOKE
(right). The STOKE code is 16 lines shorter, 1.6x faster, and
slightly faster than expert handwritten assembly.

large executable hardware instruction set [2] to implicit enumer-
ation through symbolic theorem proving techniques of programs
over some restricted register transaction language [9, 11, 14].

An attractive feature of these systems is completeness: If a pro-
gram exists that meets the desired constraints, that program will
be found. Unfortunately, completeness also places limitations on
the space of programs that can realistically be considered. Because
of the huge number of programs involved, explicit enumeration-
based techniques are limited to programs of up to some fixed length
which is currently well below the threshold at which many interest-
ing optimizations take place. Implicit enumeration techniques can
overcome this limitation, but at the cost of expert-written rules for
shrinking the search space. The resulting optimizations are as good,
but no better, than the quality of the rules written by an expert.



Hand-Drawn Images à Code à Images
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Learning to Infer Graphics Programs from
Hand-Drawn Images

Kevin Ellis
MIT

ellisk@mit.edu

Daniel Ritchie
Brown University

daniel_ritchie@brown.edu

Armando Solar-Lezama
MIT

asolar@csail.mit.edu

Joshua B. Tenenbaum
MIT

jbt@mit.edu

Abstract

We introduce a model that learns to convert simple hand drawings into graphics
programs written in a subset of LATEX. The model combines techniques from
deep learning and program synthesis. We learn a convolutional neural network
that proposes plausible drawing primitives that explain an image. These drawing
primitives are a specification (spec) of what the graphics program needs to draw. We
learn a model that uses program synthesis techniques to recover a graphics program
from that spec. These programs have constructs like variable bindings, iterative
loops, or simple kinds of conditionals. With a graphics program in hand, we can
correct errors made by the deep network, measure similarity between drawings by
use of similar high-level geometric structures, and extrapolate drawings.

1 Introduction

Human vision is rich – we infer shape, objects, parts of objects, and relations between objects – and
vision is also abstract: we can perceive the radial symmetry of a spiral staircase, the iterated repetition
in the Ising model, see the forest for the trees, and also the recursion within the trees. How could we
build an agent with similar visual inference abilities? As a small step in this direction, we cast this
problem as program learning, and take as our goal to learn high–level graphics programs from simple
2D drawings. The graphics programs we consider make figures like those found in machine learning
papers (Fig. 1), and capture high-level features like symmetry, repetition, and reuse of structure.

(a)

for (i < 3)
rectangle(3*i,-2*i+4,

3*i+2,6)
for (j < i + 1)
circle(3*i+1,-2*j+5)

reflect(y=8)
for(i<3)
if(i>0)
rectangle(3*i-1,2,3*i,3)

circle(3*i+1,3*i+1)

(b)

Figure 1: (a): Model learns to convert hand drawings (top) into LATEX (rendered below). (b) Learns to
synthesize high-level graphics program from hand drawing.

Preprint. Work in progress.
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LOGO Turtle Graphics

30 out of 160 tasks

Ellis, Wong, Nye, ..., Solar-Lezama, Tenenbaum. arxiv 2020. 28

Figure 6: Left to right: Ising model, recurrent network archi-
tecture, figure from a deep learning textbook [10], graphical
model

Figure 7: Near misses. Right-
most: illusory contours (note:
no SMC in rightmost)

Figure 8: How close are the model’s out-
puts to the ground truth on hand draw-
ings, as we consider larger sets of sam-
ples (1, 5, 100)? Distance to ground truth
measured by the intersection over union
(IoU) of predicted vs. ground truth: IoU
of sets A and B is |A \B|/|A [B|. (a)
for 63% of drawings the model’s top pre-
diction is exactly correct; (b) for 70%
of drawings the ground truth is in the
top 5 model predictions; (c) for 4% of
drawings all of the model outputs have
no overlap with the ground truth. Red:
the full model. Other colors: lesioned
versions of our model.

3 Synthesizing graphics programs from specs

Although the spec describes the contents of a scene, it does not encode higher-level features of
an image such as repeated motifs or symmetries, which are more naturally captured by a graphics
program. We seek to synthesize graphics programs from their specs.

Although it might seem desirable to synthesize programs in a Turing-complete language such as
Lisp or Python, a more tractable approach is to specify what in the program languages community is
called a Domain Specific Language (DSL) [11]. Our DSL (Tbl. 2) encodes prior knowledge of what
graphics programs tend to look like.

Table 2: Grammar over graphics programs. We allow loops (for) with conditionals (if), vertical/hor-
izontal reflections (reflect), variables (Var) and affine transformations (Z⇥Var+Z).

Program! Statement; · · · ; Statement
Statement! circle(Expression,Expression)
Statement! rectangle(Expression,Expression,Expression,Expression)
Statement! line(Expression,Expression,Expression,Expression,Boolean,Boolean)
Statement! for(0  Var < Expression) { if (Var > 0) { Program }; Program }

Statement! reflect(Axis) { Program }

Expression! Z⇥Var+Z
Axis! X = Z | Y = Z
Z ! an integer

5

Extrapolating repetitive visuals patterns comes naturally to humans, and is a practical application:
imagine hand drawing a repetitive graphical model structure and having our system automatically
induce and extend the pattern. Fig. 13 shows extrapolations produced by our system.

Figure 13: Top, white: hand drawings. Bottom, black: extrapolations produced by our system.

5 Related work

Program Induction: Our approach to learning to search for programs draws theoretical under-
pinnings from Levin search [12, 14] and Schmidhuber’s OOPS model [3]. DeepCoder [13] is a
recent model which, like ours, learns to predict likely program components. Our work differs by
identifying and modeling the trade-off between tractability and probability of success. TerpreT [15]
systematically compares constraint-based program synthesis techniques against gradient-based search
methods, like those used to train Differentiable Neural Computers [16]. The TerpreT experiments
motivate our use of constraint-based techniques.

Deep Learning: Our neural network combines the architectural ideas of Attend-Infer-Repeat [5] –
which learns to decompose an image into its constituent objects – with the training regime and SMC
inference of Neurally Guided Procedural Modeling [4] – which learns to control procedural graphics
programs. IM2LATEX [17] is a recent work that derenders LATEX equations, recovering a markup
language representation. Our goal is to go from noisy input to a high-level program, which goes
beyond markup languages by supporting programming constructs like loops and conditionals.

Hand-drawn sketches: Sketch-n-Sketch is a bi-directional editing system where direct manipula-
tions to a program’s output automatically propagate to the program source code [18]. This work
compliments our own: programs produced by our method could be provided to a Sketch-n-Sketch-like
system as a starting point for further editing. Other systems in the computer graphics literature convert
sketches to procedural representations, using a convolutional network to match a sketch to the output
of a parametric 3D modeling system in [19] or supporting interactive sketch-based instantiation of
procedural primitives in [20]. In contrast, we seek to automatically infer a programmatic representa-
tion capturing higher-level visual patterns. The CogSketch system [21] also aims to have a high-level
understanding of hand-drawn figures. Their goal is cognitive modeling, whereas we are interested in
building an automated AI application.
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Neuro-Symbolic Systems
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Closed Loop Neural-Symbolic Learning via
Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning

Qing Li 1 Siyuan Huang 1 Yining Hong 1 Yixin Chen 1 Ying Nian Wu 1 Song-Chun Zhu 1

Abstract
The goal of neural-symbolic computation is to in-
tegrate the connectionist and symbolist paradigms.
Prior methods learn the neural-symbolic models
using reinforcement learning (RL) approaches,
which ignore the error propagation in the sym-
bolic reasoning module and thus converge slowly
with sparse rewards. In this paper, we address
these issues and close the loop of neural-symbolic
learning by (1) introducing the grammar model
as a symbolic prior to bridge neural perception
and symbolic reasoning, and (2) proposing a novel
back-search algorithm which mimics the top-
down human-like learning procedure to propa-
gate the error through the symbolic reasoning
module efficiently. We further interpret the pro-
posed learning framework as maximum likeli-
hood estimation using Markov chain Monte Carlo
sampling and the back-search algorithm as a
Metropolis-Hastings sampler. The experiments
are conducted on two weakly-supervised neural-
symbolic tasks: (1) handwritten formula recog-
nition on the newly introduced HWF dataset;
(2) visual question answering on the CLEVR
dataset. The results show that our approach sig-
nificantly outperforms the RL methods in terms
of performance, converging speed, and data ef-
ficiency. Our code and data are released at
https://liqing-ustc.github.io/NGS.

1. Introduction
Integrating robust connectionist learning and sound sym-
bolic reasoning is a key challenge in modern Artificial Intel-
ligence. Deep neural networks (LeCun et al., 2015a; 1995;
Hochreiter & Schmidhuber, 1997) provide us powerful and
flexible representation learning that has achieved state-of-

1 University of California, Los Angeles, USA. Correspondence
to: Qing Li <liqing@ucla.edu>.

Proceedings of the 37 th
International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. Comparison between the original neural-symbolic model
learned by REINFORCE (NS-RL) and the proposed neural-
grammar-symbolic model learned by back-search (NGS-BS). In
NS-RL, the neural network predicts an invalid formula, causing a
failure in the symbolic reasoning module. There is no backward
pass in this example since it generates zero reward. In contrast,
NGS-BS predicts a valid formula and searches a correction for its
prediction. The neural network is updated using this correction as
the pseudo label.

the-art performances across a variety of AI tasks such as
image classification (Krizhevsky et al., 2012; Szegedy et al.,
2015; He et al., 2016), machine translation (Sutskever et al.,
2014), and speech recognition (Graves et al., 2013). How-
ever, it turns out that many aspects of human cognition, such
as systematic compositionality and generalization (Fodor
et al., 1988; Marcus, 1998; Fodor & Lepore, 2002; Calvo
& Symons, 2014; Marcus, 2018; Lake & Baroni, 2018),
cannot be captured by neural networks. On the other hand,
symbolic reasoning supports strong abstraction and gener-
alization but is fragile and inflexible. Consequently, many
methods have focused on building neural-symbolic models
to combine the best of deep representation learning and
symbolic reasoning (Sun, 1994; Garcez et al., 2008; Bader
et al., 2009; Besold et al., 2017; Yi et al., 2018).

Recently, this neural-symbolic paradigm has been exten-
sively explored in the tasks of the visual question answer-
ing (VQA) (Yi et al., 2018; Vedantam et al., 2019; Mao
et al., 2019), vision-language navigation (Anderson et al.,

= ?



Let’s zoom into the very bottom
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SAT solverToday
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Next next week



SAT Preliminaries

• Variables
⁃ 𝑤, 𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 𝑐, 𝑥! , 𝑥" , …

• Literals
⁃ Variables or their negations, e.g., 𝑥, 𝑦 (𝑜𝑟 ¬𝑦)

• Clauses
⁃ Disjunction of literals, e.g., 𝑎 ∨ 𝑥! ∨ 𝑦

• Formula
⁃ Conjunction of clauses, e.g., 𝑥! ∨ ¬𝑦 ∧ (𝑥" ∨ ¬𝑥!)

• Model
⁃ A partial/total mapping from variables to True (⊤) or False (⊥), 
⁃ e.g., {𝑥! → ⊤, 𝑥" → ⊤, 𝑦 → ⊥}

• Formula can be satisfiable (SAT) or unsatisfiable (UNSAT)
29



Notation simplification

• Literal
⁃ Use 𝑖 to denote 𝑥#
⁃ Use −𝑖 (or 𝑖 ) to denote ¬ 𝑥# (𝑜𝑟 𝑥# )

• Clause
⁃ Use a set {𝑥! , ¬𝑥" , 𝑥$} to represent a disjunction 𝑥! ∨ ¬𝑥" ∨ 𝑥$
⁃ Which can be further simplified as {1, −2, 3}

• Formula
⁃ Use a set {𝑐! , 𝑐" , 𝑐$} to represent a conjunction 𝑐! ∧ 𝑐" ∧ 𝑐$
⁃ E.g., 𝑥! ∨ ¬𝑥$ ∧ (𝑥" ∨ ¬𝑥!) can be simplified as { 1, −3 , 2, −1 }

• Model
⁃ Use a set to represent a mapping
⁃ {𝑥! → ⊤, 𝑥" →⊥, 𝑥$ → ⊤} can simplified as {1, −2, 3}

c This is a comment
c DIMACS format
p cnf 3 2
1 2 -3 0
-2 3 0
c here is a solution
s 1 -2 3

Formula: (𝑥!∨ 𝑥" ∨ ¬𝑥#) ∧ (¬𝑥" ∨ 𝑥#)

Solution: {𝑥! → ⊤, 𝑥" →⊥, 𝑥# → ⊤}

30



Basic preprocessing

• Pure literal
⁃ A variable 𝑥 occurs only positively (or only negatively)
⁃ Remove all clauses containing 𝑥

• Tautology clause
⁃ A clause is always true (thus can be removed)
⁃ E.g., 𝑥! ∨ 𝑥" ∨ ¬𝑥! ∨ ⋯

• Subsumption
⁃ 𝑐! subsumes 𝑐" if and only if 𝑐! ⇒ 𝑐" (or 𝑐! ⊆ 𝑐")
⁃ E.g., (𝑥! ∨ ¬𝑥$) ⇒ (𝑥! ∨ 𝑥" ∨ ¬𝑥$) (or 1, −3 ⊆ {1, 2, −3}
⁃ 𝑐" can be removed safely

• Unit propagation
⁃ A clause contains a single literal 𝑙
⁃ 𝑙 has to be true if there exists a solution or model

31



Scalability of (practical) SAT Solving





Let’s brainstorm a bit …

• It is easy to check whether an assignment is satisfiable or not

• Algorithm-0
⁃ Randomly generate an assignment and check if it is a satisfiable solution

• Algorithm-1
⁃ Let’s enumerate all possible assignments, say in lexicographic order
⁃ E.g., starting with all variables are True, then only one variable is False… then two …

• Algorithm-2
⁃ Once a variable’s truth value has been decided, we can simplify the formula
⁃ We may enumerate in different orders



Unit Propagation

• A.k.a, Boolean Constraint Propagation (BCP)
⁃ If a clause consists of a single literal (called unit clause), that literal has to be True.

⁃ Simplify the formulation, and perform BCP recursively if there is new unit clause(s)

𝑥! ∧
¬𝑥" ∨ ¬𝑥! ∧
(𝑥#∨ 𝑥") ∧
(𝑥! ∨ 𝑥#) ∧

𝑥! ∧
¬𝑥" ∨ ¬𝑥! ∧
(𝑥#∨ 𝑥") ∧
(𝑥! ∨ 𝑥#) ∧

𝑥- = ⊤ 𝑥! ∧
¬𝑥" ∨ ¬𝑥! ∧
(𝑥#∨ 𝑥") ∧
(𝑥! ∨ 𝑥#) ∧

𝑥. =⊥ ¬𝑥" ∧
(𝑥#∨ 𝑥") ∧

𝑥/ = ⊤

𝑥# ∨ 𝑥" ∧



Empty Formula vs Empty Clause

• Empty formula is trivially satisfied.

• Empty clause cannot be satisfied.

(𝑥!) ∧
¬𝑥! ∧

𝑥- = ⊤
(𝑥!) ∧
¬𝑥! ∧

Empty formula ≡ no more constraints 

Empty clause ≡ no more literals that can be assigned to True  



Other basic pre-processings

• Pure literal
⁃ A variable 𝑥 occurs only positively (or only negatively)
⁃ Remove all clauses containing 𝑥

• Tautology clause
⁃ A clause is always true (thus can be removed)
⁃ E.g., 𝑥! ∨ 𝑥" ∨ ¬𝑥! ∨ ⋯

• Subsumption
⁃ 𝑐! subsumes 𝑐" if and only if 𝑐! ⇒ 𝑐" (or 𝑐! ⊆ 𝑐")
⁃ E.g., (𝑥! ∨ ¬𝑥#) ⇒ (𝑥! ∨ 𝑥" ∨ ¬𝑥#) (or 1, −3 ⊆ {1, 2, −3}
⁃ 𝑐" can be removed safely
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DPLL Algorithm

Davis–Putnam–Logemann–Loveland (1962)

Better data structures

Better branching heuristics

Better backtracking



Optimizing BCP

• BCP takes 80-90% of solver time

• Classic implementation
⁃ For each clause, have counters for satisfied, falsified, and unresolved literals
⁃ When a literal is set or unset, update counters for all relevant clauses

• “2 watched literals” trick
⁃ A clause does not affect the search if it has two or more non-falsified literals
⁃ Only need to pick two literals to watch for each clause

• When either is falsified
⁃ Check if there is another non-falsified literal, use that one as the new watched literal
⁃ Otherwise, the current clause becomes unit clause



Advantages of ”2 watched literals”

• Fewer clauses are visited when a literal is set

• unset is  𝑂(1)
⁃ No literals are falsified

⁃ Watched literals are unchanged

• When a literal is frequently “set-then-unset”
⁃ Fewer clauses will be affected

⁃ When a clause is affected for the very first time, another watched literal is chosen



Two popular branching heuristics

Dynamic Literal Individual Sum (DLIS)

Variable State Independent Decaying Sum (VSIDS)



Decision Levels

𝑤@1 = 1
𝑥@2 = 1

𝑟@0 = 1

𝑑@4 = 1
𝑏- ∧ 𝑏. ∧ ⋯∧ 𝑏0 ⇒ ℎ¬𝑏- ∨ ¬𝑏. ∨ ⋯∨ ¬𝑏0 ∨ ℎ

Horn clause: a clause with at most one positive literal



Conflict-driven Clause Learning

Many steps later…

𝑥! = ⊤, 𝑥$ = ⊤

𝑁𝑂𝑇 (𝑥! = ⊤ ∧ 𝑥$ = ⊤)¬𝑥- ∨ ¬𝑥5

Marques-Silva & Sakallah, 1996

𝑁𝑂𝑇 (𝑥! = ⊤ ∧ 𝑥% = ⊤ ∧ 𝑥& =⊥)¬𝑥2 ∨ ¬𝑥3 ∨ 𝑥4



Non-chronological backtracking

𝑥-@1 = ⊤

𝑥6@2 = ⊤

𝑥7@3 = ⊥

𝑥-@1 = ⊤

𝑥6@2 = ⊤

𝑥7@2 = ⊤

𝑥-@1 = ⊤

𝑥5@1 = ⊥
(failed)

¬𝑥- ∨ ¬𝑥5

¬𝑥2
∨ ¬𝑥3

∨ 𝑥4

𝐶89:;0< = 𝑙=! ∨ 𝑙=" ∨ ⋯∨ 𝑙=#
𝑤ℎ𝑒𝑟𝑒 𝑑! < 𝑑" < ⋯ < 𝑑'

Backtrack to level 𝑑'(!so that C will become a unit clause immediately



How to choose a proper conflict?
• Unique Implication Point (UIP)
⁃ A single node at level 𝑑 such that all paths from the current decision literal (𝑙𝑖𝑡@𝑑) to 

the conflict (𝑘@𝑑)

⁃ Obviously, the source node (𝑙𝑖𝑡) and the sink node (𝑘) are UIPs.

• First UIP strategy
⁃ Pick the conflict that consists of the closest UIP to the conflict node 



Restart

• Restart from scratch once in a while

• Why useful at all?
⁃ (Some) Learnt clauses will be kept

⁃ Even with same heuristics, the search will go to a different direction

⁃ With learnt clauses, extra pre-processing (or “in-processing”) can be performed



Ablation Study of Modern CDCL Solver

[Source: Katebi, Skallah & Marques-Silva 2011]

Importance of major features: Clause Learning > VSIDS > 2WL > Restart



Well-known SAT solvers

• Chaff (2002)
⁃ https://www.princeton.edu/~chaff/zchaff.html

• MiniSat (2005)
⁃ http://minisat.se/

• Glucose (2009)
⁃ https://www.labri.fr/perso/lsimon/glucose/

• CaDiCaL (2017)
⁃ http://fmv.jku.at/cadical/

• Kissat (2020)
⁃ https://github.com/arminbiere/kissat
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Proof

• A satisfiable solution is easy to check/verify

• What if a solver claims UNSAT?
⁃ A sequence of resolution ends up with an empty clause

⁃ CDCL is essentially constructing a resolution-based proof when an instance is UNSAT

⁃ The proof size could be quite large

⁃ For the pigeonhole problem, the resolution-based proof size is exponential

Armin Haken, The intractability of resolution, Theoretical Computer Science, 1985
https://www.sciencedirect.com/science/article/pii/0304397585901446

Haken’s lower bound (slides): https://www.ti.inf.ethz.ch/ew/courses/extremal04/raemy.pdf
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Limitation of CDCL

Pigeonhole principle

CDCL-based SAT solvers suffer from solving PHP instances

If we put 𝑛 + 1 pigeons into 𝑛 holes, 
there exists at least one hole with 
more than one pigeons.

How to encode PHP as a 
SAT solving problem?
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Satisfiability vs Validity

• Satisfiability
⁃ There exists some assignment so that the formula is true.

⁃ ∃𝑥!, 𝑥", … , 𝑥$. 𝜙(𝑥!, … , 𝑥$)

• Validity
⁃ For all assignments, the formula is true.

⁃ ∀𝑥!, 𝑥", … , 𝑥$. 𝜙(𝑥!, … , 𝑥$)

• The negation of one is equivalent to the other
⁃ 𝑁𝑂𝑇 ∃𝑥!, 𝑥", … , 𝑥$. 𝜙 𝑥!, … , 𝑥$ ≡ ∀𝑥!, 𝑥", … , 𝑥$. ¬ (𝜙 𝑥!, … , 𝑥$ )

⁃ 𝑁𝑂𝑇 ∀𝑥!, 𝑥", … , 𝑥$. 𝜙 𝑥!, … , 𝑥$ ≡ ∃𝑥!, 𝑥", … , 𝑥$. ¬ (𝜙 𝑥!, … , 𝑥$ )
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Pigeonhole Principle

“For all possible arrangements, some hole 
contains one or more pigeons.”

“There exists an arrangement, no hole 
contains more than one pigeons.”

“There exist an arrangement, each hole 
contains one (or less) pigeon.”

Negation

Tautology

UNSAT

UNSAT

Rephrase
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SAT Encoding of Pigeonhole problem

• N+1 pigeons, N holes

• Boolean variable 𝑥5,6
⁃ the 𝑖-th pigeon is placed in the 𝑗-th hole

• Each pigeon should be in some hole
⁃ 𝑥#,! ∨ 𝑥#," ∨ ⋯∨ 𝑥#,&
⁃ N+1 clauses

• No hole contains more than one pigeon
⁃ Any pair of pigeons should not be in the same hole
⁃ ¬𝑥#,' ∨ ¬𝑥(,' where 𝑖 ≠ 𝑘

⁃ For each hole, &)! ∗&
"

clauses
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Demo: try Minisat on Pigeonhole

• Minisat solver
⁃ http://minisat.se/

• PHP constraints generation
⁃ https://user.it.uu.se/~tjawe125/software/pigeonhole/
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