CSC 2547H: AUTOMATED REASONING

WITH MACHINE LEARNING

Xujie Si
Assistant Professor

Department of Computer Science

University of Toronto

Course Overview

* Goal
- Introduction to the cutting-edge research on
- Understand relevant and learn to use the state-of-the-art
- With a special focus on and

* Prerequisites

- (CSC373H1 Algorithm Design, Analysis & Complexity
- (CSC324H1 Principles of Programming Languages
- CSC311H1 Introduction to Machine Learning

e Evaluation

- Class participation (10%): attendance, in-class/online discussions

- One Assignment (15%): “solver-aided” programming

- Paper presentation + QAs (15%): 15-minute presentation by every student

- Project (proposal 15%, presentation 20%, report 25%): up to 4 students/group

Course Structure and Schedule

* Week 1-3: Intro to reasoning challenges
- SAT (week 1), SMT (week 2), Program Analysis & Synthesis (week 3)

* Week 4-10: Paper presentations (~8 per week)

- Week 4: Machine learning for SAT
- Week 5: Machine learning for SMT A N
- Week 6: Formal methods for machine learning Cost

hardware

software

- Week 7: Classic machine learning for code

- Week 8: Deep learning for code

- Week 9: Deep learning and logic programming
- Week 10: Neuro-symbolic systems

* Week 11-12: Project presentations

1960 2020 3

Presentation guidelines

* Preparation

- Start as early as possible (at least two weeks in advance)

@,

% Check the course schedule: https://www.cs.toronto.edu/~six/csc-2547hs-w23.html

@,

« Make a post on Ed and indicate which paper you would like to present
- Meet TA and ask for feedback (at least one week in advance)
- Prepare avideo recording (before the class)

e Content
- Background

- Problem & challenges
- Main idea
- Main results + demo (bonus)

- Related/future work
* Tips
- Clarity is most important (an obscure and confusing presentation is meaningless)

- Your main goal is to teach others something cool from the selected paper
- A big plusis toinspire others and yourself through your presentation

https://www.cs.toronto.edu/~six/csc-2547hs-w23.html

Office Hours

- Instructor, Tuesday, 3 PM - 4 PM, BA 7072
- TAs, 2 hours/week
- Or by appointment

Online Discussions

- Ed

- ldeally, all questions should go to Ed. Your post can be private if needed.
Late submission policy

- 15% off [day

No plagiarism (absolutely)

- Plagiarism detection software will be used

No eating, drinking, etc. in class

Supplemental Textbooks

* No need to buy any

- Recommended by not required

- You can find (free) online copies

. X =IO SS ==
R — V1) i - = PATTERN RECOGNITION f&
HANDBOOK ‘ ~ lan Goodfellow, Yoshua Bengio, ND MACHINE LEARNING sg"
Daniel Kroening

=l ~ RS
H HH 4 "\ and Aaron Courville > 4
Ofer Strichman oo of satisfiability e e AR 7 é

Decision s,
Procedures .

An Algorithmic Point of View

Second Edition

(X X X X BRTICES
®O®O®@® AminBicre
OO O ® Miijn Heule
® ® Hans van Maaren
OO OO TobyWish

10S

Instructor and TAs

* Instructor: Xujie Si

- Assistant Professor

X/

s UofT: 2023 - now

X/

< McGill/Mila: 2021-22
- PhD from UPenn (2020)

- Homepage: https://www.cs.toronto.edu/~six/index.html

* Office: BA 7202

e Research interests:

- PL: Program analysis, synthesis & verification

- Al: Symbolic constraint solving, deep learning, neuro-symbolic systems

https://www.cs.toronto.edu/~six/index.html

Intro - Jonathan Lorraine

e 4th year PhD candidate in machine learning group
e Advised by David Duvenaud
e Did MScAC at U of T beforehand

e My research focuses on nested optimization in Machine Learning
o Hyperparameter optimization, learning in games, amortized optimization, ...

e Homepage for more: https://www.cs.toronto.edu/~lorraine/

TA Intro: Zhaoyu L1

« 2"d year PhD student
- Spent 15t year at McGill / Mila

- Bachelor degree from Shanghai Jiao Tong University

e Research Interests

- Neuro-symbolic learning and reasoning

- Automated theorem proving
* Homepage

- https://www.zhaoyu-li.com/

https://www.zhaoyu-li.com/

Some caveats (before we have fun) ...

* Lots of paper reading

- 60+ research papers (see the tentative schedule)

- Most are quite technical (you are required to read at least one carefully and deeply)
* Lots of “hacking” (in different languages)

- Hand-on experiences of using/building/analyzing solvers

- Kind of data scientist + system programming experts
* Some necessary skills/traits

- Strong desire to learn new things (no one can force you to learn if you don’t want to)

- Don’t be afraid of exotic notations (they are just notations, the ideas behind are essential)
- Understand things with unknowns

- Learn to read quickly (by ignoring some details)

- Learn to debug complicated systems (by abstracting away certain details)

10

What is intelligence?

Can compute fast?

_ Can differentiate cats from dogs?
Look like human?
® o & ROTE B WO I e
/‘. - y CAT g: .:‘.'. .-.’.‘. oo Output

4 ;ﬁ‘ :..: o:oo e
f G et I ol BN 22
“. PO R PO I Py
A "os ML S

Compute faster?

fastest? Can drive?

11

What is Intelligence? (Cont.)

+ BEAME NEWS

EXAMPLE HAND 1

& °,POT:$10,975

i
. v
.o
$10,000

FOLD

2022. LifeArchitect.ai

ARTIFICIAL
GENERAL
INTELLIGENCE

Human Intelligence, Animal Intelligence,

Machine Intelligence, Alien Intelligence,
you-name-it, ...

Which one is the strongest (so far)?

Which one will be the strongest?

D>

0 rir

Human Brain vs Turing Machine

Planning Voluntary Touch
movement I movcmcntl Pain,
- Position Complex
-_—t . processing,

Attention

lllll

After billion years of evolution, the universe
produces intelligent brains

No computers can be more powerful than a
Universal Turing Machine

14

Penrose’s
three worlds
philosophy

* Brain is fully determined by

physics laws

* Physics laws are fully
described by Math

 Math is created(?) by brain

Platonic
mathematical
world

Mental

world AL = .
Sy Physical

world

15

Hardness Measure: NP-Complete, Undecidability

* NP-complete (proudly originated from UofT)

- Nondeterministic Turing machine

- Polynomial-time complete

- A solution can be checked in polynomial time (on a deterministic Turing machine)
- 3-SAT is the first well-known NP-complete problem (Cook, 1971)

* Undecidability

- Impossible to construct an algorithm that always leads to yes-or-no answer

- Regardless how long the algorithm may return
- Halting problem is the first well-known undecidable problem

16

Main Progress: Heuristics + Engineering

Handbook of SAT

Inprocessing
Tseitin BMC ~ SMT Cube & Conquer
Encoding SAT Chapter
PPLL wot CDCL VSIDS Donald Knuth
complete
DP g V\glskf_l:_o\'l'_ LBD Proofs gAT & SMT
| " ‘ —|-|— ‘ ‘ everywhere
| | | | ‘ C
1960 1970 1980 1990 2000 2010
1st SAT Portfolio | |Rhase
competition Saving QBF
working
Look Ahead Bounded |ProbSAT _
Variable Avatar Massively
SAT for Elimination | Parallel
Planning Arithmetic

Figure Credit: Armin Biere Solvers 17

WHY DOES IT

MATTER?

ackage

ation
—
-~ »
 ———
—
—

ntation

systems

Finite Element Analysi
Adaptive Meshing

Non-Linear
Differential Equations

Constraint Solving
SAT Solvers

Compile Optimizationg

Graph Level Logic Reduc
BDD, Equation Solver
Symbolic Simulation

Processors Executin

Al/ML/Math Algorithms

Some Examples of Computational Software in EDA

IMPORTANT
APPLICATIONS
IN EDA

A problem has been detected and Windows has been shut down to prevent damage
to your computer.

UNMOUNTABLE_BOOT_VOLUME

If this is the first time you've seen this error screen,

restart your computer. If this screen appears again, follow
these steps:

Check to make sure any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
for any Windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use Safe Mode to remove or disable components, restart

your computer, press F8 to select Advanced Startup Options, and then
select Safe Mode.

Technical Information:

¥¥* STOP: Ox0000OOED (Ox80F128D0, OxCPOOOBIC, Ox00000000, Ox00000000)

A Killer Application: Software Verification

/L)
ALSafictiablifivalleqalulRucREARSISRINAL Microsoft l—//
Y | Windows*?
B = @ | J
SAGE, Pex, . SLAM O

Static Driver

w
o
o
=
®

Yogi, Vigilante
ET <D . .
e I Windows Vista
a 2 ‘
x || 8 '
F
R2L 7 :

Windows:7
Backend:

SMT solver:Z3

‘Windows 2000 Windows 10 [

NOT JUST
WINDOWS...

Shortly after the first successful moon
landing, Dijkstra spoke to the head of
development for the module software:

"How did you produce so many lines of
perfect code?"

"Huh? We had a a before
launch, it accidentally calculated the moon
as rather than :

"Wow! Those guys were lucky to make it
alive, then!"

annot be always lucky ...

S.PENONRG

@ Informatlon Technology

Verification Tools Secure Online
Shopping, Banking

Originally published in 2010

Originating Technology/NASA Contribution

Much is made of the engineering that enables the complex operations of a
rover examining the surface of Mars—and rightly so. But even the most
advanced robotics are useless if, when the rover rolls out onto the Martian soil,
a software glitch causes a communications breakdown and leaves the robot
frozen. Whether it is a Mars rover, a deep space probe, or a space shuttle,
space operations require robust, practically fail-proof programming to ensure
the safe and effective execution of mission-critical control systems.

Just as rovers are rigorously tested in simulated Martian conditions on Earth
before actual mission launch. the software components must also be

Hard to be perfect, but statistics helps

ennelxplores

Internet Explorer has encountered a problem and needs /&-_ﬂ
to close. We are sonry for the inconvenience. = 4

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that you can send to help us improve
Internet Explorer. We will treat this report as confidential and anonymous.

Debug Send Error Report Don't Send ’

Xcode quit unexpectedly.

Click Reopen to open the application again. Click Report
to see more detailed information and send a report to
Apple.

Ignore Report... Reopen

Sorry, Ubuntu 12.04 has experienced an internal error.

If you notice Further problems, try restarting the computer.

& Send an error report to help fix this problem

Show Details Continue

24

Learn/synthesize small code

H S & Roster - Excel

File Home Inset Pagelayott Formulas ata ACROBAT Q Tell me what you want to do

1 # gcc -03 1 # STOKE
oo [EXCG' Sees 3 .LO: 3 .LO:
A S < D E F L 4 movqg rsi, r9 4 shlg 32, rcx
1 Name First Last
=]wanning e patte rn S > movl ecx r© CX Special report: Ukraine’s The future of psychedelics Evolution of a native agricultural
i “D/!:;g;':e';:m 6 shr CI 32 y ISl ‘hero city’ of s-cience p.1036 ‘ in medicine. p. 1051 weed pp.1053&1079
I U,
5 Earlene McCarty and 7 andl OXffffffff, rod
Ol Jon Voigt 8 movqg rcx, rax _
7 Mia Arnold - §
8 |Jorge Fe.llows s h OWS a 9 movl edx, edx & " | g%;ECEMBER 2022
9 Rose Winters 1 O lmulq r 9 , rax < | science.org
10 Carmela Hahn Ld . ;
11 Denis Horning p revl ew 11 J-.mulq rdX ;y T 9
12 Johnathan Swope 1 2 lmulq rsi, rdX
13 |Delia Cochran . .
14 Marguerite Cervantes 1 3 lmulq rsi 4 rcx
15 |Liliana English 1 4 addq rdX , rax
16 Wendy Stephenson .
15 jae .L2
16 movabsqg 0x100000000, rdx
17 addg rdx, rcx
18 .L2:
19 movq rax, rsi
20 movqg rax, rdx

@ 21 shrq 32, rsi
22 salg 32, rdx
23 addq rsi, rcx

24 addgq r9, rdx

e 25 adeq 0, rcx CODE Bv AI
opliot 2 aadq £b, rax
277 adecqg 0, rcx Matching humans in

programming competitions

28 addq rdi ’ rdx pp.1056 & 1092
29 adecq 0, rcx
30 movq rcx, r8

31 movq rdx, rdi

25

Hand-Drawn Images = Code - Images

for (i < 3)

L.:‘ E rectangle (3*i,-2%i+4,
o0 — 3%1+2,6)
o for (j <i+ 1)
‘ circle(3*i+1,-2%j+5)
Q O reflect (y=8)
o 0O for(i<3)
O ——| if(i>0)
0t rectangle(3*i-1,2,3%i,3)
O Q circle(3*i+1,3*i+1)

O0CO0O0
OCO00O0
OCO0O0

26

Neuro-Symbolic Systems

Query DeepProblLog Program Compose
+E=" <

nn(net, [X],Y,[0..9]) :: digit(X,Y).

addition(X,Y,Z):- digit(X,N1),digit(Y,N2),
Z is N1+N2. Generate* Execute
<part geometry= >
Logical Reasoning <pose refl=“left” trans=“left”/>
<pose refl=“right” trans=“right”/>
addition(EgEl. 8) :- digit([Eg 0),digit(E] 8),8 is 0+8. </part>

addition(EREl 8) :- digit(Eq,5),digit([E],3),Z is 5+3.

4 ScendGraph N

Neural network evaluation

nn(net, (g1, Y, [0..9]) :: digit(gg.Y).2> o1)—atir— gl

,$) §<1
left
| - 9“(

02

tree

~hame_,

left giraffe

@ —name—> rhino
C‘ y, 2

Let’s zoom into the very bottom

’/" h"f‘\;‘/’f ;,'Jr"\;- ,/’,; / \ ,‘/‘// f ,/,v /,/f —F/!/ f /“"'f ey e, /‘w /o)
NET S “Spec ||l
3 B |
Next next week
SAGE, Pex, SLAM
Boogle Static Driver

Yogi, Vigilante

\

Path to bug position

% ‘ SUONIPUOD UOIEILIDA ‘

Next week
Backend:

SMT solver: Z3

2006 © Copyrights WhiteHat Security

Today

28

SAT Preliminaries

Variables

- W,X,y,z,a,b,c,xq, X5, ..

Literals

- Variables or their negations, e.g., x,y (or —y)

Clauses

- Disjunction of literals, e.g., aVx; Vy

Formula

- Conjunction of clauses, e.g., (x; V =y) A (x5 V =1x1)

Model
- A partial/total mapping from variables to True (T) or False (1),

- egu,{x1>T,x,>T,y—> 1}
Formula can be satisfiable () or unsatisfiable (UNSAT)

29

Notation simplification

* Literal .
tera This is a comment
- Useito denote x; DIMACS format
- Use —i(ori)to denote - x; (or x;) 3 2
12 -390
 Clause
-2 30
{x1, x5, x5} to represent a disjunction x; V —x, V x5 here is a solution
- Which can be further simplified as {1, —2, 3} 1-23
* Formula

{ci,c,,c3} torepresent a conjunctionc; Ac, Acy
- E.g., (x1 V=x3) A (x V =x;) can be simplified as {{1, -3}, {2, —1}}

Model

. Formula: (x;V x, V =x3) A (mx, V X3)
to represent a mapping

+ {x, > T,x, >1,x; > T} can simplified as {1,~2,3} Solution: {x; > T, %, 1,13 - T}

30

Basic preprocessing

Pure literal

- Avariable x occurs only positively (or only negatively)

- Remove all clauses containing x

Tautology clause

- A clause is always true (thus can be removed)
- Eg,x1VxVaxgV.

Subsumption

- ¢4 subsumes ¢, if and only if ¢c; = ¢, (or ¢ € ¢3)

- E.g, (x1V-ax3) = (x1VxyV-axg) (or{l,-3}c{1,2, -3}
- ¢, can be removed safely

Unit propagation
- A clause contains a single literal [
- [hasto be true if there exists a solution or model

31

Scalability of (practical) SAT Solving

18?,0 1988 1994 1996 2002
~10 var SOCRATES Hannibal GRASP ~ Berkmin

~ 3Kk var ~3k var ~k var ~10k var

]l

1986 1992 1996 2001

1952 1962 BDDs GSAT Stalmarck Chaff
Quine DLL ~100 var ~300 var~ 1000 var ~10k var
~10 var ~10 var
1996
SATO

~1Kk var

SAT Competition Winners on the SC2020 Benchmark Suite

250 - S =

) {W —o6— kissat-2020
5> : —&— maple-lem-disc-cb-d1-v3-2019
-~ 5P " : —é&—— maple-lem-dist-cb-2018
200 &5 oSO i = | —®— maple-lem-dist-2017
g 5 = o —&— maple-comsps-drup-2016
—6— lingeling-2014
——— abedsat-2015
V& ' Lol i lingeling-2013
150 o 2, ppt— | —— glucose-2012
; 5 7 i Pl o | glucose-2011
cryptominisat-2010
: WA= : —— precosat-2009
’ " S S S =2 i —&— minisat-2008
100 - . ; g = 4~ berkmin-2003
T = M s | —A— minisat-2006
o4 . ——+——1rsat-2007
—o6—satelite-gti-2005
—@— zchaft-2004

solved instances
.
B
\

50 o = L o @ & . 3 — | —@— limmat-2002

e l I 1 1 i
0 1,000 2,000 3,000 4,000 5,000

CPU time data produced by Armin Biere and Marijn Heule

Let’s brainstorm a bit ...

* |t is easy to check whether an assignment is satisfiable or not

e Algorithm-0

- Randomly generate an assignment and check if it is a satisfiable solution
* Algorithm-1

- Let’s enumerate all possible assignments, say in lexicographic order

- E.g., starting with all variables are True, then only one variable is False... then two ...

e Algorithm-2
- Once avariable’s truth value has been decided, we can simplify the formula

- We may enumerate in different orders

Unit Propagation

* A.k.a, Boolean Constraint Propagation (BCP)

- If a clause consists of a single literal (called unit clause), that literal has to be True.

- Simplify the formulation, and perform BCP recursively if there is new unit clause(s)

Pl
I I
SWAN XA

=T —
ol mmy CRYIROA | DA Bl
(x3 xZ) (ng xZ) N\ (x3V xz) N :> (x3V ,v,7) A

rn)
(xlv.)l,gj./\.
X3=T

(X3) A

Empty Formula vs Empty Clause

* Empty formula is trivially satisfied.

* Empty clause cannot be satisfied.

(X)) A :> (X7)-A
(1) A (%) A

Empty formula = no more constraints

Empty clause = no more literals that can be assigned to True

Other basic pre-processings

* Pure literal
- Avariable x occurs only positively (or only negatively)
- Remove all clauses containing x
* Tautology clause
- A clause is always true (thus can be removed)
- Eg,x1VXyV-axqgV:
 Subsumption
- 1 subsumes ¢, if and only if c; = ¢, (or c; € ¢5)
- E.g, (x1V—x3) = (x4 VxyV-=xgz)(or{l,-3}c{1,2,-3}
- ¢, can be removed safely

37

DPLL Algorithm

Davis-Putnam-Logemann-Loveland (1962)

2 ' G(—BCP(F) : <

. EE— - S S S S e e e e

if G = T then return true
1f G = | then return false

up < Choose(G)! ¢ '

SN U1 s W

Optimizing BCP

« BCP takes 80-90% of solver time

* Classic implementation
- For each clause, have counters for satisfied, falsified, and unresolved literals

- When a literal is set or unset, update counters for all relevant clauses

“2 watched literals” trick

- A clause does not affect the search if it has two or more non-falsified literals

- Only need to pick two literals to watch for each clause

When either is falsified

- Check if there is another non-falsified literal, use that one as the new watched literal

- Otherwise, the current clause becomes unit clause

Advantages of "2 watched literals”

e Fewer clauses are visited when a literal is set

* unsetis 0(1)

- No literals are falsified

- Watched literals are unchanged

* When a literal is frequently “set-then-unset”

- Fewer clauses will be affected
- When a clause is affected for the very first time, another watched literal is chosen

Two popular branching heuristics

1 Function ChooseDLIS(F):

2

N SN U1 s W

for clause cl € F do
for literal lit € cl do

] count[lit] < count[lit] + 1
end

end
return literal w. the max. count

Dynamic Literal Individual Sum (DLIS)

9

Function ChooseVSIDS(F):

// initialize scores
score[v € vars] <+ 0

// when adding a learnt clause
for v € learnt clause do

‘ score[v] < score[v] + 1

end
// after every N steps

for v € vars do

score[v]
€

‘ score[v] <
end
return variable w. the highest score

Variable State Independent Decaying Sum (VSIDS)

Decision Levels

Level Dec. Unit Prop.

F = (r)AN(FVs)A) g .
(wVa)A(xVaVb) 1 w——>
(yVzVe)A(bVEVd)

2 X —> b

e Decisions / Variable Branchings: 3y

w=1lx=1y=1z=1 \

r@0 = 1 4 z > C > d

w@l =1

x@2 =1

—byV =by V-V b, Vh by Ab,N---Ab, > h

d@4 =1

Horn clause: a clause with at most one positive literal

Conflict-driven Clause Learning

Marques-Silva & Sakallah, 1996

F={ci,cc3c40c5cCq...,Co}

C5. X5 V X7

[
\
\
N

- (& J -

- s s s - -

X1 V Xy NOT (x1 =T Axy=T) Many steps later...

—|x1V—|x8Vx7 NOT(XlzT/\XSZT/\X7 :J-)

Non-chronological backtracking

X1
XA

x1@1 =T

x8@2 =T

X7@3 — J_

(failed)

Clearnt = ldl v ldz VeV ldk

_le V _IX4_
whered; < d, < -+ < dj

Backtrack to level d;_;so that C will become a unit clause immediately

x1@1 =T
x8@2 =T
X7@2 =T
x1@1 =T
X4@1 =1

How to choose a proper conflict?

* Unique Implication Point (UIP)

- Asingle node at level d such that all paths from the current decision literal (lit@d) to
the conflict (k@d)

- Obviously, the source node (lit) and the sink node (k) are UIPs.
* First UIP strategy

- Pick the conflict that consists of the closest UIP to the conflict node

 Restart from scratch once in a while

* Why useful at all?

- (Some) Learnt clauses will be kept
- Even with same heuristics, the search will go to a different direction

- With learnt clauses, extra pre-processing (or “in-processing’) can be performed

Ablation Study of Modern CDCL Solver

Importance of major features: Clause Learning > VSIDS > 2WL > Restart

1000
900
800
700
600
500
400
300
200
100

0

CPU Time (s)

0 100 200 300 400 500 600 700 800 900 1000

Instances
[Source: Katebi, Skallah & Marques-Silva 2011]

Well-known SAT solvers

Chaff (2002)

- https://www.princeton.edu/~chaff/zchaff.html

MiniSat (2005)

- http://minisat.se/

* Glucose (2009)

- https://www.labri.fr/perso/lsimon/glucose/

CaDiCaL (2017)
- http://fmv.jku.at/cadical/

* Kissat (2020)

- https://github.com/arminbiere/kissat

48

https://www.princeton.edu/~chaff/zchaff.html
http://minisat.se/
https://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/cadical/
https://github.com/arminbiere/kissat

* A satisfiable solution is easy to check/verify

e What if a solver claims UNSAT?

- A sequence of resolution ends up with an empty clause

- CDCL is essentially constructing a resolution-based proof when an instance is UNSAT
- The proof size could be quite large

- For the pigeonhole problem, the resolution-based proof size is exponential

Armin Haken, The intractability of resolution, Theoretical Computer Science, 1985
https://www.sciencedirect.com/science/article/pii/0304397585901446

Haken’s lower bound (slides): https://www.ti.inf.ethz.ch/ew/courses/extremal04/raemy.pdf

49

https://www.sciencedirect.com/science/article/pii/0304397585901446
https://www.ti.inf.ethz.ch/ew/courses/extremal04/raemy.pdf

Limitation of CDCL

Pigeonhole principle

If we put n + 1 pigeons into n holes,

‘ l ;* there exists at least one hole with
more than one pigeons.

- N

How to encode PHP as a

SAT solving problem?
\- J

CDCL-based SAT solvers suffer from solving PHP instances

50

Satisfiability vs Validity

e Satisfiability
- There exists some assignment so that the formula is true.
- Axq, X9, e, X O(X1, o, Xpy)
* Validity
- For all assignments, the formula is true.
- VX1,X2, v, X0 O (X1, oor) Xp)
* The negation of one is equivalent to the other
- NOT (Elxl,xz, ey Xy (x4, ...,xn)) = VX1, X, v, Xp. 1 (P(xq, ..., Xp))
- NOT (Vxq, %2, o) X (1, oy X)) = 3%1, X3, v, Xppe 11 (P (g, oy X))

51

Pigeonhole Principle

“For all possible arrangements, some hole
contains one or more pigeons.” Tautology

Negation

! l ;* “There exists an arrangement, no hole

contains more than one pigeons.” UNSAT

Rephrase

: UNSAT
“There exist an arrangement, each hole

contains one (or less) pigeon.”

52

SAT Encoding of Pigeonhole problem

N+1 pigeons, N holes

Boolean variable x; ;

- thei-th pigeonis placed in the j-th hole
Each pigeon should be in some hole

= Xig VXV ViXig
- N+1 clauses

No hole contains more than one pigeon

- Any pair of pigeons should not be in the same hol

- XV Xy, j wherei # k
(n+1)*n

- For each hole, clauses

53

Demo: try Minisat on Pigeonhole

* Minisat solver
- http://minisat.se/

 PHP constraints generation

- https://user.it.uu.se/~tjawe125/software/pigeonhole/

54

http://minisat.se/
https://user.it.uu.se/~tjawe125/software/pigeonhole/

