
CSC 2547H: AUTOMATED REASONING
WITH MACHINE LEARNING

Xujie Si

Assistant Professor

Department of Computer Science

University of Toronto

1

Paper presentation

• Grading rubrics
⁃ Preparation (15%)

v Sign up on Ed 5%

v Get feedback from TA 5%
v Practice Recording 5%

⁃ Presentation (70% + 15% bonus)
v Provide the necessary background 10%

v Explain the problem and main challenges 10%

v Illustrate the main ideas clearly 15%
v Show the main results 15% + demo (15% bonus)

v Limitations / related / future work discussion 10%

v Finish under time 10% (around 20 minutes depending on the sign-ups)

⁃ Question Answering (15%)
v In-class QA (10%)
v Ed QA (5%)

2

Week #Sign-ups

Week4: ml4sat 4

Week5: ml4smt 3

Week6: fm4ml 6

Week7: ml4code 2

Week8: dl4code 4

Week9: dl+logic 4

Week10: nv-sym 1

Lecture Overview

• Program Analysis
⁃ Dynamic Analysis

⁃ Static Analysis

• Program Synthesis
⁃ Programming by Examples / Demonstrations

⁃ Syntax-guided Program Synthesis

3Time

Cost
softwarehardware

1960 2020

w
ith learning?

Program Analysis

• Given a program, analyze whether it is “good”

• What is “good” or “bad”?
⁃ Correctness
⁃ Performance
⁃ Energy efficiency
⁃ Memory footprint
⁃ Fault tolerance
⁃ Easy to read / maintain
⁃ Obscure enough to protect IP
⁃ Side channels (e.g., timing, cache miss, etc.)
⁃ Liveness, fairness, no crashes (e.g., deadlock, segment fault, etc.)

4

Dynamic Analysis

• Software Testing
⁃ Unit testing / Integration testing / System testing / Acceptance testing (alpha, beta)

⁃ Regression testing / compatibility testing

⁃ White-box testing / black-box testing / gray-box testing

⁃ Differential testing

⁃ Fuzzing

⁃ Mutation testing

⁃ Delta debugging

⁃ Code coverage

5

https://people.inf.ethz.ch/suz/

https://google.github.io/oss-fuzz/

https://lcamtuf.coredump.cx/afl/

https://people.inf.ethz.ch/suz/
https://google.github.io/oss-fuzz/
https://lcamtuf.coredump.cx/afl/

Symbolic Execution

• Assuming there exists at least one input following a given execution path

• Keep track of symbolic constraints along the given path step by step

• Solve constraints
⁃ SAT è a concrete test case
⁃ UNSAT è a proof that the given execution path is infeasible

6

1 def foo(x, y):

2 if x < 10:

3 y += x

4 if y < 15:

5 assert(False) #crash 1

6 else

7 assert(x < 2*y) #crash 2

8 return 100

9 elif x == 1234:

10 return 5678

11 else:

12 return x * y

x < 10 ∧ y2 = x+ y ∧ y2 < 15
∧ ∧ ≥ ∧∧ ∧

x < 10 ∧ y2 = x+ y ∧ y2 ≥ 15 ∧ x ≥ 2 ∗ y2

Dynamic Symbolic Execution

• When constraints become just too complicated
⁃ Option-1: give up completely (not good L)

⁃ Option-2: Instantiate some symbolic values with concrete values, and move on

7

∧ ∧ ≥
1 def foo(x, y, z):

2 if 2**x <= y * sin(y):

3 w = x + z

4 if w < y:

5 assert (w > 0)

6 else:

7 assert (y <= z)

2x ≤ y ∗ sin(y) ∧ w = x+ z ∧ w < y ∧ w ≤ 0≤ ∗ ∧ ∧ ∧ ≤
1
2 ≤ π

2 ∗ sin(π2) ∧ w = (−1) + z ∧ w < π
2 ∧ w ≤ 0

8

9

Static Analysis

• Analyze programs without executing them
⁃ Prevent bugs in the earliest stage (i.e., before any execution happens)

• Compiler warnings and errors

• Linters, static checkers

• Type Checking and Inference

• Program Verification

10

https://clang-analyzer.llvm.org/available_checks.html

https://clang-analyzer.llvm.org/available_checks.html

Type Checking and Inference

• Type safety
⁃ Minimum requirement of non-buggy code
⁃ e.g. “hello” + 1.23 does not make sense

• Dynamic typing vs static typing
⁃ Python, JavaScript, PHP, Ruby, Racket, etc.
⁃ C/C++, C#, Java, Rust, Go, Standard ML, Ocaml, Haskell, etc.

• Strongly statically typed languages tend to be safer, faster, less annotations, modular …

• Linear type
⁃ Rust, Haskell, Idris, Linear ML, etc.

• Dependent type
⁃ Agda, Coq, Lean, Idris, Dependent ML, etc.

11
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/

https://openai.com/blog/formal-math/

https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://openai.com/blog/formal-math/

Program Verification

• Symbolic Executions
⁃ Explicitly enumerate and verify each path

⁃ How about loops / recursions?

• Theorem Proving
⁃ Hoare logic, separation logic, intuitionistic/constructive logic, etc.

• Abstract Interpretation

• Software Model Checking

12

Theorem Proving

• Hoare Logic

13

C. A. R. Hoare, An Axiomatic Basis for Computer Programming, CACM 1969

Loop Invariant
(Fundamental Challenge)

Theorem Proving

• Separation Logic
⁃ Reason about programs that manipulate pointer data

structures
⁃ Split heaps into disjoint parts
⁃ Enable scalable compositional reasoning

14

P ∗Q ”and, separately”

∗
x &→ 1 ∗ y &→ 1

x 1

y 1

x
1

y Peter O’hearn, Separation logic, CACM 2019

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 89

review articles

covered and the number of program-
mers served. Static analysis with SL has
matured to the point where it has been
applied industrially in the Facebook
Infer program analyzer, an open source
tool used at Facebook, Mozilla, Spotify,
Amazon Web Services, and other com-
panies (www.fbinfer.com).

The purpose of this article is to de-
scribe the basic ideas of SL as well as
these and other developments.

Separating Conjunction
and Implication
Mathematical semantics has been
critical to the discovery and further SL
development, but many of the main
points can be gleaned from “picture
semantics.” Consider the first picture
in Figure 1. We read the formula at
the top of this figure as “x points to
y and separately y points to x.” Go-
ing down the middle of the diagram
is a line that represents a heap par-
titioning: a separating conjunction
asks for a partitioning that divides
the heap into parts, heaplets, satisfy-
ing its two conjuncts. At the bottom
of the first picture is an example of
a concrete memory description that
corresponds to the diagram. There,
x and y have values 10 and 42 (in the
“environment,” or “register bank”),
and 10 and 42 are themselves loca-
tions with the indicated contents (in
the “heaplet,” or even “RAM”).

The indicated separating con-
junction here is true of the pictured
memory because the parts satisfy the
conjuncts, as indicated in the second
picture. The meaning of “x points to
y and yet to nothing” is precisely dis-
ambiguated in the RAM description
below the diagram: x and y denote val-
ues (10 and 42), x’s value is an allocat-
ed memory address which contains
y’s value, but y’s value is not allocated.
The separating conjunction splits the
heap/RAM, but it does not split the as-
sociation of variables to values.

Generally speaking, the separating
conjunction P * Q is true of a heap if it
can be split into two heaplets, one of
which makes P true and the other of
which makes Q true. A distinction be-
tween * and Boolean conjunction ∧ is
that P * P ≠ P where P ∧ P = P. In particu-
lar, x ! v * x ! v is always false: there is
no way to divide any heap in such a way
that a cell x goes to both partitions.

* is often used with linked struc-
tures. If list (x, y) describes an acyclic
linked list running from x to y, then we
can describes a structure with a list seg-
ment, followed by a single pointer, fol-
lowed by a further list running up to 0
(null), as follows:

x t y

This is the kind of structure you
might need to consider when deleting
an element from a list, or inserting one
into it.

There is a further connective, the sep-
arating implication or “magic wand.”
P –* Q says that whenever the current
heaplet is extended with a separate
heaplet satisfying P, the resulting com-
bined heaplet will satisfy Q. For exam-
ple, (x ! –) * ((x ! 3) –* Q) says that x is
allocated in the current heap, and that if
you mutate its contents to 3 then Q will
hold. This describes the “weakest pre-
condition” for the mutation [x] = 3 with
postcondition Q.26

Finally, there is an assertion emp
which says “the heaplet is empty,” emp
is the unit of *, so that P = emp * P = P *
emp. Also, –* and * fit together is a way
similarly to how implication ⇒ and con-
junction ∧ do in standard logic. For ex-
ample, the entailment

A * (A –* B) ! B

(where ! reads “entails”) is a SL relative
of “modus ponens.”

Although we will concentrate on the
informal picture semantics in this ar-
ticle, for the theoretically inclined we
have included a glimpse of the formal
semantics in Figure 2.

Rules for Program Proof
Figure 3 contains a selection of proof
rules of SL. The rules are divided into
axioms for basic mutation commands
(the “small axioms”) and inference
rules for modular reasoning. An infer-
ence rule says “if you can derive what
is above the line, then so can you what
is below,” and the axioms are deriv-
able true statements that are given.
The small axioms are for a program-
ming language with load and store
instructions similar to an assembly
language. If we vary the programming
language the small axioms change.
The concurrency rule uses a composi-
tion operator || for running two pro-
cesses in parallel, derived from Dijks-
tra’s parbegin/parend.16

The first small axiom just says that if
x points to something beforehand, then
it points to v afterward, and it says this
for a small portion of the state in which x
is the only active cell.

Figure 3. Separation logic proof system (a selection).

Online demo

https://codeboard.io/projects/11587?view=2.1-21.0-22.0

Theorem Proving
• Intuitionistic/Constructive Logic/Dependent Types
⁃ A theorem is a type
⁃ Building a proof is essentially constructing an object of that type

15

Curry–Howard
correspondence

https://deepspec.org/main

https://deepspec.org/main

Abstract Interpretation

• A theory of sound approximation of the semantics of programs
⁃ Abstract domain 𝔸, and Concrete domain ℂ
⁃ Abstraction function, 𝛼: ℂ → 𝔸
⁃ Concretization function, 𝛾 ∶ 𝔸 → 2ℂ

16

Cousot & Cousot, Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, POPL 1977

minus + 0 - ⊺ ⊥

+ ⊺ + + ⊺ ⊥

0 - 0 + ⊺ ⊥

- - - ⊺ ⊺ ⊥

⊺ ⊺ ⊺ ⊺ ⊺ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

1 def foo(x, y):
2 if x < 10:
3 y += x
4 if y < 15:
5 assert(False) #crash 1
6 else
7 assert(x < 2*y) #crash 2
8 return 100
9 elif x == 1234:

10 return 5678
11 else:
12 return x * y

x < 10 ^ y2 = x+ y ^ y2 < 15
x < 10 ^ y2 = x+ y ^ y2 � 15 ^ x � 2 ⇤ y2

1 def foo(x, y, z):
2 if 2**x <= y * sin(y):
3 w = x + z
4 if w < y:
5 assert (w > 0)
6 else:
7 assert (y <= z)

2x  y ⇤ sin(y) ^ w = x+ z ^ w < y ^ w  0
1
2  ⇡

2 ⇤ sin(⇡2) ^ w = (�1) + z ^ w < ⇡
2 ^ w  0

1 def bar(x, y, z, n):
2 if n <= 2:
3 return False
4 return x**n + y**n == z**n

1 def foo(x):
2 if x <= 0:
3 return 1 - x
4 else:
5 return x

P ⇤Q
x 7! 1 ⇤ y 7! 1

1

ℂ = {−2147483648,… ,−1, 0, 1, … , 2147483647}

𝔸 = {+, 0, −,⊺, ⊥}

𝑥 ∈ 𝛾(𝛼 𝑥)
𝑥 = α(𝛾 𝑥)

⊥

⊺

+- 0

Successful Applications of A.I.

17

https://www.astree.ens.fr/
Astrée

Program Verification

• Model checking
⁃ Check whether a finite-state model (FSM) meets a given

specification (usually in temporal logic)

⁃ Earlier successes are in hardware design

• Symbolic model checking
⁃ Using Binary decision diagram (BDD) to represent all possible

states

18

A hardware bug incurred
$475 million loss

Program Verification

• Bounded model checking
⁃ Unroll FSM up to a fixed number of steps

⁃ Check whether a property is violated using SAT solver

19

4 K.L. McMillan

3 Model Checking Based on Interpolation

Bounded model checking and interpolation can be combined to produce an over-
approximate image operator that can be used in symbolic model checking.

The intuition behind this is as follows. A bounded model checking problem
consists of a set of constraints – initial constraints, transition constraints, final
constraints. These constraints are translated to conjunctive normal form, and,
as appropriate, instantiated for each time frame 0 . . . k, as depicted in Figure 1.
In the figure, I represents the initial constraint, T the transition constraint, and
F the final constraint. Now suppose that we partition the clauses so that the

s0 sk

I F

s1
...

T T T T T T T

Fig. 1. Bounded model checking.

initial constraint and first instance of the transition constraint are in set A, while
the final condition and the remaining instances of the transition constraint are
in set B, as depicted in Figure 2. The common variables of A and B are exactly
the variables representing state s1.

s0 sk

I FT T T T T T T

⇒p

A B

Fig. 2. Computing image by interpolation.

Using a SAT solver, we prove the clause set is unsatisfiable (i.e., there are
no counterexamples of length k). From the proof we derive an interpolant P
for (A, B). Since P is implied by the initial condition and the first transition
constraint, it follows that P is true in every state reachable from the initial
state in one step. That is, P is an over-approximation of the forward image of I.
Further, P and B are unsatisfiable, meaning that no state satisfying P can reach
a final state in k − 1 steps.

This over-approximate image operation can be iterated to compute an over-
approximation of the reachable states. Because of the approximation, we may
falsely conclude that F is reachable. However, by increasing k, we must even-
tually find a true counterexample (a path from I to F) or prove that F is not
reachable (i.e., the property is true), as we shall see.

Fig. 1. Comparison between monolithic and incremental interpolants

Amore general method of computing an interpolant for ('A,'B) is the
following two-stage process. First, we show that 'A ^ 'B is unsatisfiable
by means of a certain partition-based algorithm (by this we mean an
algorithm in which one solver is run on 'A, another solver is run on 'B,
and the two solvers are allowed to exchange constraints consisting only
of common variables). Second, we show how to construct an interpolant
based on these exchanged constraints (see Section 3.3 for details).

Our approach is somewhat similar in spirit to the classic algorithm
that extracts a satisfying assignment from a SAT decision procedure,
viewing the procedure as an oracle. In this algorithm, the variables are
ordered, and then the first one is assigned at random. The algorithm then
queries the SAT oracle for the existence of a satisfying assignment for the
rest of the formula; it continues in this way until all variables are assigned.

1.2 Related Work

This work is tightly related to various methods for finding all models
(satisfying assignments) of a given formula, or more specifically finding
all assignments to the common variables of 'A and 'B possessing exten-
sions satisfying 'A. We refer to the papers [McM02,JS05,BKK11,GM12]
containing e�cient algorithms for this task and references to earlier work.
In particular we also follow the widely used blocking clause approach to
prevent the algorithm from discovering the same point again and again,
and we try to generalize cubes as much as possible to get quick coverage
of A (the set of models of 'A). However, our setting allows an addi-
tional twist on the generalization process which makes convergence of
interpolant computation quicker than that of computing all satisfying as-

Craig’s Interpolant

A : {(p), (¬p ∨ q)}

B : {(¬q ∨ r), (¬r)}
I: {q}

Program Verification

• Software Model Checking
⁃ Extend model checking to software, which has infinite number of states

20

Program Verification

• Constrained Horn Clauses

21

https://www.microsoft.com/en-us/research/blog/spacer-and-z3-accessible-reliable-model-checking-as-
theorem-proving/

https://www.microsoft.com/en-us/research/blog/spacer-and-z3-accessible-reliable-model-checking-as-theorem-proving/
https://www.microsoft.com/en-us/research/blog/spacer-and-z3-accessible-reliable-model-checking-as-theorem-proving/

Lecture Overview

• Program Analysis
⁃ Dynamic Analysis

⁃ Static Analysis

• Program Synthesis
⁃ Programming by Examples / Demonstrations

⁃ Syntax-guided Program Synthesis

22Time

Cost
softwarehardware

1960 2020

w
ith learning?

Programming by Examples

23

Watch What I Do: Programming by Demonstration, 1993

https://web.media.mit.edu/~lieber/PBE/PBE-Examples.html

Like neural networks, an old idea
becomes fashionable again ...

https://web.media.mit.edu/~lieber/PBE/PBE-Examples.html

Programming by Examples

24
https://stackoverflow.com/questions/40015743/jpa-distinct-and-limiting-result-number

Wang et al., Synthesizing Highly Expressive SQL Queries from Input-Output Examples, PLDI 2017

https://stackoverflow.com/questions/40015743/jpa-distinct-and-limiting-result-number

Programming by Examples

25

(a) Page of black camera. (b) After hover on silver button.

(c) After click (grayed page). (d) Page of silver camera.

Server JavaScript DOM User

Click JS handler

Response
Price

updated

Request

Scrape price

Hover a

b

c

d

JS handler

Picture
update

(e) Sequence of events.

Figure 1: Amazon price scraping interaction. Each circle in (e) corresponds to a webpage state shown in (a-d). Note that hovering
over the silver option instantly displays the silver camera picture but not its price. Only after the click does the page request the
silver price from the server and overlays to gray. The response updates the price and removes the gray overlay.

1 driver = webdriver.Chrome()
2 driver.get(amazonURL)
3 # Find the silver button
4 button = driver.find_elements_by_xpath(’//img[@alt="Silver"]’)[0]
5 button.click() # Mimic the user clicking the button
6 # Wait until the product title contains the color name
7 WebDriverWait(driver, 10).until(
8 EC.text_to_be_present_in_element(
9 (By.ID, "productTitle"), "Silver"))

10 price = driver.find_element_by_id("priceblock_ourprice")
11 print price.text # Print out price of item

Figure 2: Selenium script to scrape the cost of a silver camera
from Amazon.com.

tifying features of the target node that both uniquely identify
it and remain constant over multiple page accesses. For the
silver camera image, the programmer notices that the alt field
is always “Silver” and uses this insight to identify the element
with the XPath expression in line 4.

The programmer must also notice the asynchrony: the
script cannot scrape the price immediately after clicking
the “Silver” button. Doing so would yield the price of the
previously selected black camera. This incorrect outcome
occurs because the page responds to the click by requesting
the silver camera’s price from the server. The page grays
out the content as a visual cue (Fig. 1c) to convey that the
displayed information is invalid and a request is pending.
Surprisingly, the page still lets the user interact with the stale
information. For example, a user clicking the “Add to cart”
button during this period will add the black camera, after
already having clicked on the silver one.

The programmer must devise a wait condition to iden-
tify when the silver camera’s price becomes available. The
standard approach of waiting for the relevant DOM node to

appear does not work in this case because the node is present
throughout. The alternative approach of adding a fixed-time
wait may break when the server is especially slow. For the
Figure 2 example, the programmer opted to carefully mon-
itor the page changes to determine that the page was ready
for scraping when the product title included the word “Sil-
ver” (line 7-9). This page-specific condition requires reverse
engineering that is likely inaccessible to end users.

2.2 Web automation script failures

In general, one writes web automation scripts for tasks that
must be performed many times. Therefore, scripts should be
usable for as long as possible. However, today’s webpages are
in a constant state of flux, which makes this goal a challenge.
They are frequently redesigned; they undergoing A/B testing;
and they present breaking news, user-generated content, and
other data with high update rates. Many pages are minimized
or obfuscated, using new identifiers for their DOM nodes
during each reload. In short, the server-side code, the DOM
structure and contents, and the JavaScript code can change at
any time.

As an example, consider the Amazon task. The Selenium
script used the expression driver.find_element_by_id("price
block_ourprice") to find the current product price (line 10).
Although this may seem like an intuitive approach – it uses
an ID, which should uniquely identify the node – low-level
attributes like this are prone to change. During one 60 second
interaction with the Amazon page, we logged 1,499 ID
modifications and 2,419 class modifications. These changes
were caused by scripts running on the page without the page
even reloading! Similar changes can likewise occur during
A/B testing or page redesign. These low-level attributes are
imperceptible to the user. So, while a user can continue
interacting normally, selectors that use low-level attributes
may not find the correct element, causing the script to fail.

Barman et al., Ringer: Web Automation by Demonstration, OOPSLA 2016

Let’s say we want to find cheap silver cameras on Amazon …

FlashFill demo

26POPL Most Influential Paper Award 2021

Any concerns of PBE?

27Twitter link

Given 𝑖,, 𝑜, , … , 𝑖-, 𝑜- ,
synthesize a program

Easy!
𝑖𝑓 𝐼 = 𝑖,, 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜,
𝑖𝑓 𝐼 = 𝑖., 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜.

…
𝑖𝑓 𝐼 = 𝑖-, 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜-

https://twitter.com/krismicinski/status/823009414714183680?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E823009414714183680%7Ctwgr%5E%7Ctwcon%5Es1_c10&ref_url=https%3A%2F%2Fpublish.twitter.com%2F%3Fquery%3Dhttps3A2F2Ftwitter.com2Fkrismicinski2Fstatus2F823009414714183680widget%3DTweet

Syntax-guided Program Synthesis

28

Syntax-Guided Program Synthesis

17

Semantic
Specification

Logical formula
ϕ(x,y)

Synthesizer

Implementation

Syntactic
Specification

Set E of
expressions

Search for e in E
s.t. ϕ(x,e(x))

www.sygus.org

SyGuS Problem

29

Syntax-Guided Synthesis (SyGuS) Problem

� Fix a background theory T: fixes types and operations

� Function to be synthesized: name f along with its type
� General case: multiple functions to be synthesized

� Inputs to SyGuS problem:
� Specification ϕ(x, f(x))

Typed formula using symbols in T + symbol f
� Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

� Computational problem:
Output e in E such that ϕ[f/e] is valid (in theory T)

Syntax-guided synthesis; FMCAD’13
with Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh, Solar-Lezama, Torlak, Udupa 21

SyGuS Example 1

30

SyGuS Example 1

� Theory QF-LIA (Quantifier-free linear integer arithmetic)
Types: Integers and Booleans
Logical connectives, Conditionals, and Linear arithmetic
Quantifier-free formulas

� Function to be synthesized f (int x1, x2) : int

� Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

� Candidate Implementations: Linear expressions
LinExp := x1 | x2 | Const | LinExp + LinExp | LinExp - LinExp

� No solution exists

22

What is the solution?

SyGuS Example 1

� Theory QF-LIA (Quantifier-free linear integer arithmetic)
Types: Integers and Booleans
Logical connectives, Conditionals, and Linear arithmetic
Quantifier-free formulas

� Function to be synthesized f (int x1, x2) : int

� Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

� Candidate Implementations: Linear expressions
LinExp := x1 | x2 | Const | LinExp + LinExp | LinExp - LinExp

� No solution exists

22

SyGuS Example 2

31

SyGuS Example 2

� Theory QF-LIA

� Function to be synthesized: f (int x1 , x2) : int

� Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

� Candidate Implementations: Conditional expressions without +

Term := x1 | x2 | Const | If-Then-Else (Cond, Term, Term)
Cond := Term ≤ Term | Cond & Cond | ~ Cond | (Cond)

� Possible solution:
If-Then-Else (x1 ≤ x2, x2, x1)

23

SyGuS Example 2

� Theory QF-LIA

� Function to be synthesized: f (int x1 , x2) : int

� Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

� Candidate Implementations: Conditional expressions without +

Term := x1 | x2 | Const | If-Then-Else (Cond, Term, Term)
Cond := Term ≤ Term | Cond & Cond | ~ Cond | (Cond)

� Possible solution:
If-Then-Else (x1 ≤ x2, x2, x1)

23

How to solve SyGuS problems?

• Enumerative Search

• Constraint Solving (SMT)

• Stochastic Search

32

Enumerative Search

• Enumerate programs from small to large

• Pruning is important

• Run test cases

• No need to enumerate equivalent sub-expressions
⁃ But how to avoid that?

• Use pre-defined rules
⁃ E.g. A + B == B + A

• Indistinguishability based on tests

33

Udupa et al., TRANSIT: specifying protocols with concolic snippets, PLDI 2013

Alur et al., Synthesis Through Unification, CAV 2015

Is it effective?

34

R. Alur, D. Fisman, R. Singh & A. Solar-Lezama 11

0	
50	
100	
150	
200	
250	
300	
350	

CV
C4
	1.
5.1
	

CV
C4
	1.
5	

En
um
era
2v
e	

EU
So
lve
r	

Sk
etc
hA
C	

Sto
ch
	

ICE
_D
T	

Alc
he
mi
stC
S	

Alc
he
mi
stC
SD
T	

Benchmarks	Solved	
per	Solver	per	Track	

General	Track	

LIA	Track	

InvTrack	

PBE	Track	

Figure 4: The overall combined results for each solver on benchmarks from all the 4 tracks.

them).

General Track The percentage of benchmarks solved by each solver in the General track is shown
in Figure 5 on the top left. The EUSOLVER solves the maximum number of benchmarks 206 out of
309. The CVC4-1.5.1 solver solves 195 benchmarks, whereas the last year’s winner in this category
CVC4-1.5 solved 179 benchmarks. The EUSOLVER solved 59 benchmarks uniquely and CVC4-1.5.1
solved 22 benchmarks uniquely. With regard to time to solve, the CVC4-1.5.1 solvers solved 161 bench-
marks among the fastest whereas the EUSOLVER solved 127 benchmarks among the fastest. For details
on the expression size see Figures 6 to 9.

Conditional Linear ArithmeticTrack The percentage of benchmarks solved by the solvers in the
Conditional Linear Integer Arithmetic track is shown in Figure 5 on the top right. The CVC4-1.5.1
solver solved all 73 benchmarks in this category, whereas the EUSOLVER solved 72 out of the 73 bench-
marks. Last year’s winner in this category, CVC4-1.5, solved 70 benchmarks. One benchmark was
solved uniquely, by CVC4-1.5.1. The CVC4-1.5.1 solver solved 72 benchmarks among the fastest and
EUSOLVER solved 33 among the fastest.

Invariant Synthesis Track The result for the invariant synthesis track is shown in Figure 5 on the bot-
tom left. In this track, the ICE-DT solver (also last year’s track winner) solves the maximum number of
benchmarks 57 out of 67. The CVC4-1.5.1 solver solves 56 benchmarks, whereas the ALCHEMIST-CSDT
solver solves 52 benchmarks. Two benchmarks were solved uniquely, the two by ICE-DT. In terms of
time to solve CVC4-1.5.1 preformed best, solving 50 bechmarks among the fastest. This is an impres-
sive improvement from last years’ version CVC4-1.5 which solved 10 benchmarks among the fastest.
The ICE-DT solver solved 44 benchmarks among the fastest and the ALCHEMIST-CSDT solver solved 37
benchmarks among the fastest.

Programming By Example Track The results for the new Programming By Example (PBE) track
is shown in Figure 5 on the bottom right. Unlike other tracks, we see a dramatic difference in the
performance of the solvers for the benchmarks in the PBE track. The EUSOLVER remarkably solves
787 benchmarks out of 858 (742 out of 745 in the bit-vectors category and 45 out of 108 in the strings

https://sygus.org/comp/2016/report.pdf

Expression Sizes

CVC42017 generates

quite big expressions…

Solver Sum ExprSize Max ExprSize Avrg ExprSize
CVC42017 6193196 1843271 16559.34759

EUSolver2017 16333 2551 40.62935323
Euphony 16009 2551 44.34626039

https://sygus.org/comp/2017/results-slides.pdf

https://sygus.org/comp/2016/report.pdf
https://sygus.org/comp/2017/results-slides.pdf

Stochastic Search

• Start with a random program

• Mutate randomly (MCMC sampling)

• Stop when finding the correct program

35

From Invariant Checking to Invariant Inference 91

depends on the VCs. Suppose the cost function is designed to obey C ∈ I ⇔
cV (C) = 0. Then by minimizing cV we can find an invariant. In general, cV
is highly irregular and not amenable to exact optimization techniques. In this
paper, we use a MCMC sampler to minimize cV .

Search(J : Initial candidate)
Returns: A candidate C with cV (C) = 0.

1. C := J
2. while cV (C) != 0 do
3. m := SampleMove(rand())
4. C′ := m(C)
5. co := cV (C), cn := cV (C′)

6. if cn < co or e−γ(cn−c0) > rand()
RANDMAX then

7. C := C′

8. end if
9. end while
10. return C

Fig. 1. Metropolis Hastings for cost minimization

The basic idea of a Metropolis Hastings sampler is given in Figure 1. The
algorithm maintains a current candidate C. It also has a set of moves. A move,
m : S #→ S, mutates a candidate to a different candidate. The goal of the search
is to sample candidates with low cost. By applying a randomly chosen move, the
search transitions from a candidate C to a new candidate C′. If C′ has lower
cost than C we keep it and C′ becomes the current candidate. If C′ has higher
cost than C, then with some probability we still keep C′. Otherwise, we undo
this move and apply another randomly selected move to C. Using these random
mutations, combined with the use of the cost function, the search moves towards
low cost candidates. We continue proposing moves until the search converges:
the cost reduces to zero.

The algorithm in Figure 1, when instantiated with a suitable proposal mech-
anism (SampleMove) and a cost function (cV), can be used for a variety of
optimization tasks. If the proposal mechanism is designed to be symmetric and
ergodic then Figure 1 has interesting theoretical guarantees.

A proposal mechanism is symmetric if the probability of proposing a transition
from C1 to C2 is equal to the probability of proposing a transition from C2 to
C1. Note that the cost is not involved here: whether the proposal is accepted or
rejected is a different matter. Symmetry just talks about the probability that a
particular transition is proposed from the available transitions.

A proposal mechanism is ergodic if there is a non-zero probability of reaching
every possible candidate C2 starting from any arbitrary candidate C1. That
is, there is a sequence of moves, m1,m2, . . . ,mk, such that the probability of
sampling each mi is non-zero and C2 = mk(. . . (m1(C1) . . .). This property is

Success Example

36

Stochastic Superoptimization

Eric Schkufza
Stanford University

eschkufz@cs.stanford.edu

Rahul Sharma
Stanford University

sharmar@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract
We formulate the loop-free binary superoptimization task as a
stochastic search problem. The competing constraints of transfor-
mation correctness and performance improvement are encoded as
terms in a cost function, and a Markov Chain Monte Carlo sampler
is used to rapidly explore the space of all possible programs to find
one that is an optimization of a given target program. Although our
method sacrifices completeness, the scope of programs we are able
to consider, and the resulting quality of the programs that we pro-
duce, far exceed those of existing superoptimizers. Beginning from
binaries compiled by llvm -O0 for 64-bit x86, our prototype im-
plementation, STOKE, is able to produce programs which either
match or outperform the code produced by gcc -O3, icc -O3,
and in some cases, expert handwritten assembly.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program Synthesis; D.1.2 [Automatic Programming]: Pro-
gram Transformation; D.1.2 [Automatic Programming]: Program
Verification; D.3.4 [Processors]: Optimization

General Terms Performance, Verification

Keywords 64-bit; x86; x86-64; Binary; Markov Chain Monte
Carlo; MCMC; Stochastic Search; Superoptimization; SMT

1. Introduction
For many application domains there is considerable value in pro-
ducing the most performant code possible. Unfortunately, the tradi-
tional structure of a compiler’s optimization phase is often ill-suited
to this task. Attempting to factor the optimization problem into a
collection of small subproblems that can be solved independently,
although suitable for generating consistently good code, leads to
the well-known phase ordering problem. In many cases, the best
possible code can only be obtained through the simultaneous con-
sideration of mutually dependent issues such as instruction selec-
tion, register allocation, and target-dependent optimization.

Previous approaches to this problem have focused on the ex-
ploration of all possibilities within some limited class of programs.
In contrast to a traditional compiler, which uses performance con-
straints to drive the generation of a single program, these systems
consider multiple programs and then select the one that is best
able to satisfy those constraints. Solutions range from the explicit
enumeration of a class of programs that can be formed using a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

[r8:rdi] = rsi * [ecx:edx] + r8 + rdi

1 # gcc -O3 1 # STOKE
2 2
3 .L0: 3 .L0:
4 movq rsi, r9 4 shlq 32, rcx
5 movl ecx, ecx 5 movl edx, edx
6 shrq 32, rsi 6 xorq rdx, rcx
7 andl 0xffffffff, r9d 7 movq rcx, rax
8 movq rcx, rax 8 mulq rsi
9 movl edx, edx 9 addq r8, rdi

10 imulq r9, rax 10 adcq 0, rdx
11 imulq rdx, r9 11 addq rdi, rax
12 imulq rsi, rdx 12 adcq 0, rdx
13 imulq rsi, rcx 13 movq rdx, r8
14 addq rdx, rax 14 movq rax, rdi
15 jae .L2
16 movabsq 0x100000000, rdx
17 addq rdx, rcx
18 .L2:
19 movq rax, rsi
20 movq rax, rdx
21 shrq 32, rsi
22 salq 32, rdx
23 addq rsi, rcx
24 addq r9, rdx
25 adcq 0, rcx
26 addq r8, rdx
27 adcq 0, rcx
28 addq rdi, rdx
29 adcq 0, rcx
30 movq rcx, r8
31 movq rdx, rdi

Figure 1. Montgomery multiplication kernel from the OpenSSL
big number library, compiled by gcc -O3 (left) and STOKE
(right). The STOKE code is 16 lines shorter, 1.6x faster, and
slightly faster than expert handwritten assembly.

large executable hardware instruction set [2] to implicit enumer-
ation through symbolic theorem proving techniques of programs
over some restricted register transaction language [9, 11, 14].

An attractive feature of these systems is completeness: If a pro-
gram exists that meets the desired constraints, that program will
be found. Unfortunately, completeness also places limitations on
the space of programs that can realistically be considered. Because
of the huge number of programs involved, explicit enumeration-
based techniques are limited to programs of up to some fixed length
which is currently well below the threshold at which many interest-
ing optimizations take place. Implicit enumeration techniques can
overcome this limitation, but at the cost of expert-written rules for
shrinking the search space. The resulting optimizations are as good,
but no better, than the quality of the rules written by an expert.

Schkufza et al, Stochastic Superoptimization, ASPLOS 2013

most loop of MCMC sampling. In our experiments, we adopt a
simple heuristic for approximating the runtime performance of a
function, which is based on a static approximation of the average
latencies of its instructions.

perf(R; T) = H(R)−H(T)

H(f) =
∑

i∈inst(f)

LATENCY(i) (13)

Figure 3 shows a reasonably high correlation between the
heuristic and the actual runtimes of the benchmarks described in
Section 6, along with rewrites for those benchmarks which were
generated in the course of our experiments. Outliers are character-
ized by disproportionately high instruction level parallelism at the
micro-op level and the performance effects of inconsistent memory
access times. A more accurate model of the second order perfor-
mance effects introduced by a modern CISC processor is straight-
forward if tedious to construct and we expect would be necessary
for more complex programs. Nonetheless, the approximation is
largely sufficient for the benchmarks that we consider. Whatever
errors stem from this imprecision can be addressed by recomputing
perf(·) using the slower JIT compilation method as a postpro-
cessing step. In our experiments we record the top-n lowest cost
samples produced by MCMC sampling, rerank each based on their
actual runtimes, and return the best result.

4.3 MCMC Sampling
For x86-64 binary optimization, we represent candidate rewrites
as finite loop-free sequences of instructions, of length !, where a
distinguished token, UNUSED, allows for the representation of
programs that contain fewer than ! instructions. This simplifying
assumption is essential to the formulation of MCMC sampling dis-
cussed in Section 3.2, as it places a constant value on the dimen-
sionality of the search space. The interested reader may consult [1]
for a thorough treatment of why this is necessary. Our definition of
the proposal distribution, q(·), chooses among four possible moves:
the first two minor, and the last two major:

Opcode. With probability pc, an instruction is selected at ran-
dom, and its opcode is replaced by a random opcode. The new op-
code is drawn from an equivalence class of opcodes which require
the same number and type of operands as the old opcode. We con-
struct these classes from the set of arithmetic and fixed point SSE
opcodes.

Operand. With probability po, an instruction is selected at
random and one of its operands is replaced by a random operand
drawn from an equivalence class of operands with equivalent types
to the old operand. If the operand is an immediate, its value is drawn
from a set of predefined constants. We construct this set using the
range -16 to 16 and all subsequent powers of 2.

Swap. With probability ps, two lines of code are selected at
random and interchanged. Each line may correspond to either an
instruction or the UNUSED token.

Instruction. With probability pi, an instruction is selected at
random and replaced either by an unconstrained random instruc-
tion or the UNUSED token. A random instruction is constructed
by first selecting an opcode at random and then choosing random
operands of the appropriate types. The UNUSED token is pro-
posed with probability pu.

These definitions satisfy the ergodicity property described in
Section 3.2. Any program can be transformed into any other
through repeated application of Instruction moves. These defini-
tions also satisfy the symmetry property, and thus allow the com-
putation of acceptance probability using Equation 6. To see why,
note that the probabilities of performing all four move types are
equal to the probabilities of undoing the transformations they pro-

Expert

llvm -O0

gcc -O3

Random

Figure 4. Abstract depiction of the search space for the Mont-
gomery multiplication benchmark. O0 and O3 optimized codes oc-
cupy a densely connected part of the space which is easily tra-
versed. Expert code occupies an entirely different region of the
space which is reachable only by way of an extremely low prob-
ability path.

duce using a move of the same type. Opcode and operand moves
are constrained to sample from identical equivalence classes before
and after acceptance. Swap and instruction moves are similarly
unconstrained in both directions.

4.4 Separating Synthesis from Optimization
An early implementation of STOKE based on the above princi-
ples, was able to consistently transform llvm -O0 code into the
equivalent of gcc -O3 code. Unfortunately, it was unable to pro-
duce results which were competitive with expert hand-written code.
The reason is suggested by Figure 4, which gives an abstract depic-
tion of the search space for the Montgomery multiplication bench-
mark. For loop-free sequences of code, llvm -O0 and gcc -O3
codes differ primarily with respect to efficient use of the stack and
choices of individual instructions. Beyond these differences, the
resulting codes are algorithmically quite similar. This is because
compiler optimizers are generally designed to compose many small
local transformations: dead code elimination deletes one instruc-
tion, constant propagation changes one register to an immediate,
and strength reduction replaces a multiplication with an add. With
respect to the search space, such sequences of local optimizations
define a region of equivalent programs that are densely connected
by very short sequences of moves (often just one) that are easily tra-
versed by a local search method. Beginning from llvm -O0 code,
MCMC sampling will quickly identify local inefficiencies one by
one, improve each in turn, and hill climb its way to a gcc -O3
code.

The expert code discovered by STOKE occupies an entirely
different region of the search space. As noted earlier, it has the
property that no sequence of small equality preserving transforma-
tions connect it to either the llvm -O0 or the gcc -O3 code.
It represents a completely distinct algorithm for implementing the
Montgomery multiplication kernel at the assembly level, one which
requires that its input values be permuted and relocated to distin-
guished register locations to permit the use of hardware intrinsics.
The only method we know of for a local search procedure to trans-
form either code into the expert code is to traverse the extremely
low probability path that builds the expert code in place next to the
original, all the while increasing its cost, only to delete the original
code at the very end. Although MCMC sampling is guaranteed to
traverse this path in the limit, the likelihood of it doing so in any
reasonable amount of time is so low as to be useless in practice.

Success Example

37

Figure 5: Speedups by benchmark. For each benchmark, the
speedup over the original NaCl library is shown. The bars
correspond to the optimization experiment, the translation
experiment, and the best rewrite we verified. The ‘optimiza-
tion mode’ much more reliably produces a verifiable result,
but ‘translation mode’ sometimes offers significant improve-
ments.

5. Evaluation

We use 13 libc string functions from the newlib library
shipped with Google Native Client to evaluate our exten-
sions to STOKE. We performed all experiments on ma-
chines with two Intel Xenon E5-2667v2 3.3GHz processors
and 256GB of RAM.

We evaluate our work in three categories. First, we
demonstrate that we can optimize these benchmarks and
achieve formally verified NaCl code with a median and av-
erage speedup of 25%. Then, we compare the baseline im-
plementation with our new system that uses the bounded
verifier. Finally, we compare the performance of the alias
relationship mining to the flat memory model.

5.1 Experiment Setup

Our goal is to improve the performance of each of the 13
libc string functions and prove correctness of the optimized
code. For each benchmark we perform two experiments, op-
timization and translation. In optimization mode, we initial-
ize the rewrite with the code shipped with NaCl and run
STOKE to improve its performance while maintaining com-
pliance with the NaCl rules. In translation mode, the rewrite
is initialized with code that does not comply with NaCl rules
and STOKE transforms it into well-formed NaCl code. For
each benchmark, we assembled test cases from randomly
generated strings.

Benchmark Target Best Best Search DDEC
LOC LOC Speedup Time (min) Time (min)

wcpcpy 40 13 48% 37 38
wcslen 43 47 97% 78 89

wmemset 47 47 0% 29 45
wcsnlen 94 51 2% 61 83

wmemcmp 91 77 47% 360 302
wcschr 87 28 2% 61 5
strxfrm 99 38 0% 81 414
wcscmp 108 29 47% 38 586

wmemchr 132 75 2% 67 30
wcscpy 35 40 25% 276 252
wcscat 89 90 26% 360 46
strcpy 70 63 30% 360 415

wcsrchr 178 178 0% 30 15

Table 1: Performance results for verified benchmarks. LOC
shows how many lines of assembly codes in the target pro-
gram. “Best LOC” and “Best Speedup” show the number
of lines of code and the speedup for the best rewrite found.
The search time includes both search and bounded verifier
queries for the optimization mode task. The DDEC time
shows the total time required to complete all sound verifi-
cation tasks in optimization mode.

The initial rewrite for the translation mode experiments is
gcc-4.9 code compiled for x86-64 with memory accesses
systematically rewritten to follow NaCl rules on memory ac-
cesses; every access is written as a load-effective-address in-
struction to compute the sandboxed 32-bit pointer followed
by a separate instruction that performs the dereference. The
transformation helps STOKE find a rewrite faster, but it is
naive and breaks correctness, degrades performance, and vi-
olates the alignment rules. However, starting here, STOKE
is sometimes able to correctly translate such programs to
correct and efficient NaCl code.

For each benchmark, we ran the search up to 15 times
for 200,000 iterations each. We set a timeout of 6 hours
on a single core per benchmark. This time is split between
running search iterations and performing bounded verifica-
tion to generate the candidate rewrites; summing across all
benchmarks, about 2/3 of this time is spent in search, and
1/3 in bounded verification. All bounded verification is per-
formed with a bound of k = 1. For each of the search runs,
we run the sound DDEC verifier with a timeout of one hour
on each candidate rewrite, in order of best expected perfor-
mance, until we find one that verifies. Statistics on the bench-
marks are in Table 1.

5.1.1 Performance Results

The performance results are shown in Figure 5 and Table 1.
The improvements range from 0% (for wcsrchr) to 97%
(for wcslen). The optimization and the translation results
are incomparable. For some benchmarks, it is easier to opti-
mize code that meets NaCl rules and for others it is easier to
translate already optimized code to valid NaCl code. How-
ever, the optimization experiment always succeeds (meaning

Churchill et al, Sound Loop Superoptimization for Google Native Client, ASPLOS 2017

