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1. Introduction

Figure 1. A “shower" of several LLPs traversing and decaying in
a radial slice of the ATLAS detector at the LHC. The interaction
point (i.e., where the protons collide to create new particles) is
at the beginning of the slice. The LLPs are created at this point,
but travel some distance (dotted line) through the detector be-
fore decaying into showers of particles that can be detected (in
red). Diagram taken from Heather Russel’s webpage: https://
hrussell.web.cern.ch/hrussell/graphics.html

Though an extensive effort over many years as taken place,
there currently is no evidence for undiscovered particles pro-
duced at CERN’s Large Hadron Collider (LHC). Recently,
there has been a growing interest in the community to de-
velop machine learning techniques to enhance sensitivity to
potential signals using all outputs of the detector.

The LHC, sat under Geneva, Switzerland, works by accel-
erating clumps of protons in a large ring at opposite speeds
nearing that of light, colliding them, and detecting what
particles are created after the collision. In some exotic ex-
tensions of the Standard Model (SM), a variety of so-called
long-lived particles (LLPs) are hypothesized to be created in
the proton-proton collisions. In this scenario, the particle af-
ter creation traverses some non-negligible distance through
the detector before decaying, resulting in a detection of ver-
tices1 and tracks2 that seemingly do not originate from the
original collision (illustrated in Fig. 1).

Unfortunately, most of the background events in the detector

1A vertex is jargon for a point in space in which multiple
particles are created.

2A track is the term for the detected path a particle takes
throughout the detector.

also show up as displaced vertices (DVs). These signal-like
background events are known as QCD events. There are also
“true" background events, called pileup, which are nuisance
particles created by protons in the clump lightly colliding
with one another.

This project aims to be an initial survey of whether different
methods in supervised learning for anomaly detection of
these LLP-originated DVs in simulated data is feasible.

To do this, we train two different types of models we have
touched upon in class – a multi-layer perceptron classifier
(MLP) (Cybenko, 1989) and a transformer-based model
(Vaswani et al., 2017) – to distinguish between events
containing LLPs and signal-like background events. Our
model’s inputs will be single events parameterized as a vari-
able collection of particles, and the output will be a single
number corresponding to classification. A single particle
(“track") is parameterized by five correlated features (See
Section 3). Thus for each event, the classifier C maps
RNtrack×5 to R.

2. Related Work
In recent years, a large community effort (Kasieczka et al.,
2021) was undertaken to work on creating model-agnostic
anomaly detection algorithms for use in the LHC. Particu-
larly fruitful contributions to the field of anomaly detection
for include optimal transport-based methods (Craig et al.,
2024), variational recurrent neural networks (Kahn et al.,
2021), generative adversarial network-based autoencoders
(Vaslin et al., 2023), weak classifiers (Amram and Suarez,
2021), and CWoLA (Classification WithOut LAbels)-based
methods (Metodiev et al., 2017).

There are also plenty of studies (e.g., (Qu et al., 2022)) using
transformer for classification; however no studies that I have
found have looked at using transformers for this task.
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3. Dataset and Features
I started the experiment by using MadGraph (Alwall
et al., 2011), Pythia (Bierlich et al., 2022), and Delphes
(de Favereau et al., 2014) to simulate three individual
datasets:3 200,000 regular background (QCD) events con-
taining p p → 2-5 particle showers (called “jets"), and two
100,000 event datasets containing a hypothetical LLP called
the neutralino (χ̃0

3) with rest masses of 100 and 500 GeV4,
respectively. Added to each event within all datasets are
an average of 60 pileup datasets (modelled as a Poissonian
process), an average number consistent with what is seen
at the LHC. Thus we have a balanced dataset of 200,000
signal + pileup events and 200,000 signal-like background
+ pileup events. As touched upon above, each particle is
parameterized by 5 features:

• pT (transverse momentum, units GeV): The compo-
nent of the particle’s momentum vector that is trans-
verse to the beam axis (i.e., radially outwards).

• η (pseudorapidity, unitless): A commonly used metric
that describes the angle of a particle relative to the
beam axis, defined as η = − log

[
tan

(
θ
2

)]
, where θ is

the angle between the particle’s momentum vector and
the positive direction of the beam axis.5

• ϕ (azimuthal angle, units radians): The azimuthal angle
between the particle’s momentum vector perpendicular
to the beam line.

• d0 (transverse impact parameter, units mm): The short-
est distance between a track and the beam line in the
transverse plane (perpendicular to the beam line).6

• dz (longitudinal impact parameter, units mm): The
distance along the beam line between the primary in-
teraction vertex and the track point.

When training the classifiers on this data, I perform several
data augmentations: I remove all tracks with pT ≤ 0.5 GeV,
remove all tracks with |η| < 4.5, remove all events with
0 tracks, scale the per-event pT distributions to sum to 1,
sort the values of each event by pT , and only choose the 80
tracks with the highest pT .

3Datasets are available upon request.
4We choose two rest masses to encourage the model to be

able to be able to classify anomalous events for energies within a
continuous mass range of O(100 GeV), as models don’t predict a
specific rest mass.

5The intuition here is that a higher η corresponds to particles
whose momentum are more along the beam line, and a lower eta
corresponds to particles whose momentum is nearly perpendicular
to the beam (p⃗ = pT r̂).

6By their nature, LLPs will have larger values of d0 because
they take non-negligible time to decay.

Figure 2. A track is parameterized by five parameters represent-
ing the shape of a helicoid. A reference point along the he-
lix is used to calculate dz and d0. It is convention to use
the helicoid’s perigee to the primary vertex as this reference
point. Figure taken from https://atlassoftwaredocs.
web.cern.ch/trackingTutorial/idoverview/

After running this data augmentation, I use the maximum
number of events possible to use while still maintaining a
balanced dataset; this turns out to be 391,000 events in total.
The dataset is randomly split into training and test datasets
with a 80:20 split, corresponding to 312,800 events in the
training dataset and 78,200 in the testing dataset.

4. Methods
4.1. Pileup synthesis

In an unfortunate circumstance, I only was able to get a hold
of 1000 pileup events to be used in the sample. What is
doubly unfortunate is that is nontrivial to simulate a large
amount of pileup without devoting a considerable amount
of computational resources to the task. Since we are dealing
with approximately 400,000 events in total, we can’t sim-
ply uniformly sample from the pileup distribution 400,000
times. Instead, we need to find a way to “simulate" 400,000
independent pileup events. To model the pileup we make
heavy use of the Gaussian Mixture Model (GMM), which,
given a number of components N , fits a weighted mixture
of multivariate Gaussians to a group of observations, where
the probability of observing values x⃗ is given by

p(x⃗; {µi,Σi, wi}Ni=1) =

N∑
i=1

wiN (x⃗;µi,Σi, wi), (1)

where
∑N

i=1 wi = 1. The latent variables {µi,Σi, wi}Ni=1

are fit using the EM algorithm, coordinate ascent algorithm
that iteratively finds the (local) maximum likelihood es-
timates of parameters in statistical models. This is done
through two steps, the E-step and M-step. In the E-step, the
responsibility of each cluster towards each individual input
data-point given the fractional distribution of cluster assign-
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ments and the clusters parameters (µ and Σ for the case of
the multivariate Gaussian). In the M-step, the latent vari-
ables are re-estimated using these new responsibilities by
maximizing the log-likelihood of the complete distribution.

Since the number of components is a hyper-parameter, we
elect to model distributions with the number of components
that minimize the Bayesian Information Criterion (BIC):

BIC = k log n− 2 log L̂. (2)

Here, k is the number of parameters estimated by the model,
n is the number of data-points in the distribution the GMM
was fit to, and L̂ is the maximized value of the sum of the
logarithm of Eq. 1 over all data-points. The BIC is a model
selection criterion and heuristic that presents a value that
roughly aims to balance model complexity with overfitting.
Generally, a lower value is better.

Because these are physical events, the event-level distri-
butions are not merely uniform samplings of the global
distribution. For example, you expect the daughter particles
created at a vertex to be very close in distance to one another
– i.e., on an event level, values of d0 are essentially a combi-
nation of delta functions. Thus, to model these event-level
distributions well, we must fit GMMs to each individual
event, allowing the covariance to be arbitrarily small (i.e.,
to effectively model a delta function). We then fit another
GMM to the distribution of GMMs, modelling the distri-
bution of means, covariances, and weights. Then, for each
event we’d like to synthesize, we sample an event-level prob-
ability distribution by sampling from this high-level GMM,
and sample from that. To determine the number of tracks to
sample from the synthetic event-level GMM, we simply fit
a separate GMM to the track multiplicity distributions. This
algorithm is illustrated in Fig. 3.

In the fitting pipeline, there are several augmentations we
had to introduce for the distributions to model well. For
each event, before fitting to a GMM, we:

1. Transform pT → log pT . This is because pT varies
over several orders of magnitude, is positive real-
valued, and is log-normal-like.

2. Remove ϕ from the dataset. It unfortunately proved to
be too difficult to model well under the time constraint;
in the synthesis of pileup, we assume that it completely
isotropic and uncorrelated from other parameters.7

3. Remove events with less than 3 tracks.8

7It’s true that ϕ is isotropic (uniformly distributed), but it is
not true that ϕ is uncorrelated. Later in the project, ϕ should be
incorporated into the GMM to ensure all correlations between
parameters are modelled.

8This may seem arbitrary but about of the third of the events
in the dataset contained 2 two tracks with very low pT and high η.

After fitting the event, we take advantage of the fact that
the covariance matrix is positive semi-definite and can be
decomposed into a product of a lower-triangular matrix and
its transpose, i.e., Σ = LL⊤. We then take the lower triangle
indices of L as the representation of the covariance matrix,
lowering the dimensionality of the GMM by N2

param −
Nparam(Nparam+1)

2 =
Nparam(Nparam−1)

2 . Nparam = 4 for
our pileup dataset, so the total number of parameters per
component of a GMM is

4 (µ) +
4(4 + 1)

2
(L) + 1 (w) = 15.

Saving the distribution of the number of components per
event to be sampled from later, we concatenate the distribu-
tion of GMMs over all events in to a single tensor.

Before fitting this distribution of GMMs to the high-level
GMM, we scale each of the 15 parameters to have a mean of
zero and unit variance. We then fit a GMM with a maximum
number of components of 100, using BIC to choose the
optimal model.

4.2. Classifiers

To train the MLP, we utilize a simple fully-connected
feed-forward neural network using PyTorch (Paszke et al.,
2019) with 5 input features, 3 hidden layers with 32 hid-
den features, and one output feature (RNtrack×5 → R).
Each input is of the shape (Nbatch, Ntrack, Nfeatures) =
(Nbatch, 80, 5); if there are less than 80 tracks in a single
event, the rest of the tensor is padded with zeros (though
this does not happen when pileup is present). An additional
mask of bools with size (Nbatch, 80, 1) is created and is
multiplied after the activation of the initial layer to ensure
the fact the padded values do not propagate through the
network. We use the ReLU activation function (Fukushima,
1975) for the input and hidden linear layers apply a mean
aggregation to end with a single value. LayerNorm (Ba
et al., 2016) is applied after each Linear activation.

Our transformer-based architecture is an encoder MLP
paired with a transformer encoder with multi-headed at-
tention (MHA) and a MLP decoder. The encoder MLP is
configured similarly to above, except that there is no output
layer, and that the hidden and output activations are GELU
the function (Hendrycks and Gimpel, 2016). The output of
this encoder MLP (i.e., 32 encoded features) is input into a
string of six transformer encoder blocks with GELU as the
activation function, each with 8 heads9 that learn different
aspects of the encoded data, with the bool mask as the key

Considering the fact that in the classifier datasets we prune off low
pT and high η events, removing these low-track events will have
negligible effects on the preprocessed classifier datasets.

9Following the original Transformer paper (Vaswani et al.,
2017).
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Figure 3. The algorithm for modeling pileup using a hierarchical GMM (HGMM).

padding mask. A dropout value of 10% is used, and the
total output is aggregated via summation. The decoder MLP
takes this output and decodes the output to a single value
over 3 hidden layers with 32 hidden features, with GELU as
the hidden activation function, no output activation function,
and no layer normalization.

5. Experiments / Results / Discussion
5.1. Successful modeling of pileup

Our final model of pileup had 75 components. It appeared
to model both the event-level and global track parameter
distributions quite well; Fig. 4 shows the global distribution
of parameters for 1,000 synthetic events compared to the
original 1,000 events. Remarkably, even though we do not
explicitly model this distribution, it is modeled well.10 How-
ever, there are little "speckles" in the synthetic distribution
which correspond to several events in which the majority
of tracks were sampled from a multivariate Gaussian with
a very small sampled covariance. This can be attributed
to the fact that our 75-component Gaussian, although hav-
ing the lowest BIC value, is still overfitting the underlying
dataset. After all, we are fitting a 75-component Gaussian to
a 15-dimensional dataset with O(5000) entries (assuming

10Due to space constraints, I cannot include the 15-component
corner plot of GMM components, although it models the distribu-
tion incredibly well. It is available upon request.

5 components on average per event)!

I attempted to get around this speckle issue by decomposing
the synthetic covariance matrix into eigenvectors and eigen-
values (applying the spectral theorem), and clipping the
eigenvalues to be at least, say 0.5, and reconstructing the co-
variance matrix from the modified eigenvalues/eigenvectors;
this worked well for η, dz and d0, but because the pT distri-
bution is essentially O(1), this clipping smeared distribution
too much. This can, in principal, be fixed if all events (be-
fore being fit) were scaled to a zero mean and unit variance
over all events. Nonetheless, due to time constraints, I used
this speckle-ridden 75-component GMM.

5.2. Classifier Performance

I used the following hyper-parameters for training the
vanilla MLP and transformer-based architecture: 500
epochs, a batch size of 2048, an initial learning rate of 0.001,
a learning rate decay rate and factor of 100 epochs and 1/10,
and the AdamW optimizer with (β1, β2)=(0.9,0.999).

500 maximum epochs was chosen to ensure no overfitting
occurred, since we have a small dataset. A batch size of
2048 was chosen to ensure maximum GPU throughput, and
the initial large learning rate followed by a step-wise decay
every 100 epochs was employed because after many epochs
of learning, it’s possible that the optimizer is jumping across
local minima with each gradient descent update. There



Figure 4. Corner plot of synthesized values of pT , η, d0, and dz
marginalized over 1000 real and synthetic pileup events. Each
scatter plot compares the distribution of a pair of track parameters.
The histograms correspond to single parameter distributions. The
y-axis on the histograms are log-scaled.

Metric Vanilla MLP Transformer
AUC 0.762 0.861
Val. Acc 0.703 0.817
Recall 0.636 0.678
Precision 0.734 0.938

Table 1. Comparison of vanilla MLP and transformer model per-
formance on their respective validation datasets.

were several primary metrics I looked at:

• ROC Curve (Receiver Operating Characteristic
Curve): A plot of the true positive rate against the
false positive rate at each possible classification thresh-
old setting.

• AUC (Area Under the Curve): The area under the
receiver operating ROC curve. The higher the AUC,
the better the model is at predicting signal as signal
and background as background. Ranges from 0 to 1.

• Validation Accuracy: The proportion of correct pre-
dictions (both true signal and true background) on the
validation dataset.

• Recall: Measures the proportion of actual signal events
that are correctly identified.

• Precision: Measures the proportion of signal classifi-
cations that were actually correct.
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Figure 5. Comparison between the vanilla MLP and transformer-
based models’ ROC curves. The transformer model clearly outper-
forms the MLP at classification.

Table 1 shows the metrics shown of these models. Clearly,
the transformer-based model performed much better than
a 3-layer MLP, owing to the architecture’s ability to under-
stand the correlation between tracks with it’s self-attention
mechanism. Figure 5 shows the ROC curve between the
two models.

6. Conclusion / Future Work
Employing hierarchical GMMs allows one to synthesize
computationally expensive pileup events on both an event-
and global- level. Issues were presented, but it is believed
that a larger pileup dataset may help alleviate them. This
opens a new avenue to simulating pileup for future studies
without actually running physical simulations of ATLAS.

It is shown that it is indeed possible to delineate QCD and
LLP events from one another in the presence of pileup, and
using transformers for the task greatly increases model per-
formance. Future studies should work with larger datasets,
or more complex Transformer models like the Particle Trans-
former (Qu et al., 2022) for this task.
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