
CS 170, Spring 2024 Homework 12 [Coding Portion] P. Raghavendra and C. Borgs

CS 170 Homework 12 [Coding Portion]

Due Monday 4/29/2024, at 10:00 pm (grace period until 11:59pm)

6 [Coding] Approximation Algorithms

For this week’s coding questions, we’ll implement some approximation algorithms for the
Traveling Salesperson problem you saw earlier. There are two ways that you can access
the notebook and complete the problems:

1. On Datahub: click here and navigate to the hw12 folder.

2. On Local Machine: git clone (or if you already cloned it, git pull) from the
coding homework repo,

https://github.com/Berkeley-CS170/cs170-sp24-coding

and navigate to the hw12 folder. Refer to the README.md for local setup instructions.

Extra Credit Opportunity

Additionally, we are offering up to 3 points of post-curve extra credit if you’d like to
keep on exploring ways to cope with NP-complete problems and try to do better than the
2-approximation for the Metric TSP problem.

Since the extra credit will be applied post-curve, attempting this question can only help your
grade, and skipping this part cannot hurt your grade.

To earn extra credit points, the total cost of your algorithm’s outputs on our test set will need
to beat certain fixed thresholds that we will release early next week. So, you will be evaluated
purely on how well you do, and will not be compared against your classmates. However, we
will enable the Gradescope leaderboard so you can see how your classmates are doing in a
friendly, low-stakes competition! You do not need to use your real name on the leaderboard,
but please keep aliases professional and appropriate.

For this extra credit portion only, we ask you to implement your code inside of a .py file that
we provide. There are two ways that you can access the .py file:

1. On Datahub: click here and navigate to the extra credit folder.

2. On Local Machine: git clone (or if you already cloned it, git pull) from the
coding homework repo,

https://github.com/Berkeley-CS170/cs170-sp24-coding

and navigate to the extra credit folder. Refer to the README.md for local setup
instructions.

While we ask that you only submit your final .py file to Gradescope, feel free to create your
own Jupyter notebooks or supporting .py files to help you test out your algorithm.

1

https://datahub.berkeley.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2FBerkeley-CS170%2Fcs170-sp24-coding&urlpath=lab%2Ftree%2Fcs170-sp24-coding%2F&branch=main
https://github.com/Berkeley-CS170/cs170-sp24-coding
https://datahub.berkeley.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2FBerkeley-CS170%2Fcs170-sp24-coding&urlpath=lab%2Ftree%2Fcs170-sp24-coding%2F&branch=main
https://github.com/Berkeley-CS170/cs170-sp24-coding


CS 170, Spring 2024 Homework 12 [Coding Portion] P. Raghavendra and C. Borgs

The test set is designed so that the DP algorithm will take forever to run. Instead, you
should try to implement some other approximation strategy – your creativity is the limit
here! Course staff have some ideas on how to get started (in no particular order):

(None of these algorithms or techniques are in scope for the final, but they are still useful and
cool!)

• Implement the 3/2-approximation for Metric TSP (Christofides Algorithm)

• Use branch-and-bound to explore subproblems in a more efficient way. See DPV Section
9.1.2 for more information.

• Improve an existing approximate solution using local search. See DPV Section 9.3.1
for more information.

• Try to use randomness or simulated annealing to get lucky and find good approximate
solutions. See DPV Section 9.3.3 for more information.

• Reduce the problem to another problem (such as integer LP) and use a pre-made solver
library.

Your algorithm will be run on the entire test set on Gradescope, so it must be efficient enough
to run on all inputs within the 40 minute timeout limit.

For the extra credit only, feel free to use any third-party library imports that you like, as
long as these library imports do not directly solve the TSP problem. So importing a Python
TSP solver is not allowed, but importing modules to help you compute an MST or a linear
program is OK. If you’re in doubt, ask!

Notes:

• Submission Instructions: For the normal assignment, please download your completed
submission .zip file and submit it to the Gradescope assignment titled “Homework 12
Coding Portion”.

For the extra credit, please upload your completed .py file and submit it to the Grade-
scope assignment titled “(Extra Credit) Coding Portion”.

• Getting Help: Conceptual questions are always welcome on Edstem and office hours;
note that support for debugging help during OH will be limited. If you need debugging
help first try asking on the public Edstem threads. To ensure others can help you, make
sure to:

1. Describe the steps you’ve taken to debug the issue prior to posting on Ed.

2. Describe the specific error you’re running into.

3. Include a few small but nontrivial test cases, alongside both the output you ex-
pected to receive and your function’s actual output.

If staff tells you to make a private Ed post, make sure to include all of the above items
plus your full function implementation. If you don’t provide them, we will ask you to
provide them.

2

https://en.wikipedia.org/wiki/Christofides_algorithm
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap9.pdf#page=5
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap9.pdf#page=5
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap9.pdf#page=16
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap9.pdf#page=21


CS 170, Spring 2024 Homework 12 [Coding Portion] P. Raghavendra and C. Borgs

• Academic Honesty Guideline: We realize that code for some of the algorithms we ask
you to implement may be readily available online, but we strongly encourage you to not
directly copy code from these sources. Instead, try to refer to the resources mentioned
in the notebook and come up with code yourself. That being said, we do acknowledge
that there may not be many different ways to code up particular algorithms and that
your solution may be similar to other solutions available online.

3


	[Coding] Approximation Algorithms

