
CS106A Final
Review Session
Summer 2022

Emily Park && Grant Bishko

Some quick logistics

● August 12th, 8:30am-10:30am

● NVIDIA Auditorium (same room as lecture)

● Open Note (but don’t rely on your notes because of timing)

Let’s Review!

Loops
● for i in range(start, end, increment)

○ “end” is the only mandatory one, and is EXCLUSIVE (up to but not including)

○ Example: for i in range(5)

○ Example: for i in range(5, 2, -1)

● for elem in structure
○ Example: for line in file

○ Example: for ch in str

● while _________
○ Example: while True

○ Example: while count < 10

Lists
● LISTS CHEAT SHEET

● A linear collection of any type of Python value

● Declare an empty list like this: things = []

● Use len(things) to get the length (# of items)

● 0-indexed, use things[i] to access the elements

● Lists are MUTABLE—they can be changed

● things.append(item) to add something to a list

● things.index(target) to find the index of the target in a list
○ Only works if target is IN the list! Error otherwise :(

https://cs.stanford.edu/people/nick/py/python-list.html

Images
image = SimpleImage(filename)

out = SimpleImage.blank(image.width, image.height)

for y in range(image.height):

for x in range(image.width):

pixel = image.get_pixel(x, y)

new_pix = out.get_pixel(x, y)

new_pix.red = pixel.red

new_pix.green = 0

new_pix.blue = 0

Grids

Dictionaries
● DICTIONARIES CHEAT SHEET

● Declare empty dictionary with curly braces { }

● dict_name[key] = value

https://cs.stanford.edu/people/nick/py/python-dict.html

Maps/Lambdas
● LAMBDAS CHEAT SHEET

● Runs a lambda function over a list of values

https://cs.stanford.edu/people/nick/py/python-map-lambda.html

String Parsing
Practice Problem

String Parsing Practice

Given a string s, look for a '(____)' within s.

Look for the first '(' in s, then the first ')' after the '('. If both parens are

found, return the chars between them.

So 'xxx(abc)xxx' returns 'abc'.

If no such pair of parens is found, return the empty string.

Thinking about this input: '))(abc)' → how can we find the ‘)’ without

pointing us to the first char?

String Parsing Practice: Solution

def parens(s):

 left = s.find('(')

 if left == -1:

 return ''

 right = s.find(')', left + 1)

 if right == -1:

 return ''

 return s[left + 1:right]

Nested Structures
Practice Problem

Nested Structures Practice

You’re hosting a huge dinner party, and you need to cook for a bunch

of your friends. They’ve all sent you their allergies, but you need a

good way to organize this information…

Let’s use a dictionary! The keys will be the names of your friends, and

the values will be lists of their respective allergies.

Nested Structures Practice

We’re going to be given a dictionary that looks like this:

result = {“Grant”: [“peanuts”, “kiwis”],

“Emily”: [“grapes”, “chocolate”],

“Jonathan”: [“cheese”] }

Given this existing dictionary, the name of a person, and an allergy

that they have, update the dictionary with the person and their

allergy.

Nested Structures Practice

def update_allergies(allergy_dict, name, allergy):

if name not in allergy_dict:

allergy_dict[name]= []

allergy_dict[name].append(allergy)

return allergy_dict

Nested Structures Practice (2)

Now that we have our dictionary built, let’s put it to use!

Let’s say we want to know how many allergies a given person has.

Task: given a dictionary allergies and a string name return the number

of allergies the given person has

def num_allergies(allergies, name):
allergies_list = allergies[name]
return len(allergies_list)

Nested Dictionaries
Practice Problem

Avatar the Last Airbender Characters

Let’s say we are given a text file containing information about each character of the ATLA

universe.

The information includes each character’s name, their age, and the nation they belong to.

See below for an example of the inputted file:

Katara-14-Water

Sokka-15-Water

Toph-12-Earth

Bumi-112-Earth

Zuko-16-Fire

Iroh-40-Fire

Azula-14-Fire

Aang-112-Air

ATLA Problem: Our Task

Our task is to read (parse) through the inputted file and return a nested

dictionary that sorts each character along with their age into their

appropriate nation.

result = {Nation: {Name: Age}}

ATLA Problem: Our Task

Katara-14-Water

Sokka-15-Water

Toph-12-Earth

Bumi-112-Earth

Zuko-16-Fire

Iroh-40-Fire

Azula-14-Fire

Aang-112-Air

parse_characters(‘character_info.txt’)

{ 'Water': {'Katara': 14, 'Sokka': 15},

 'Earth': {'Toph': 12, 'Bumi': 112},

 'Fire': {'Zuko': 16, 'Iroh': 40, 'Azula': 14},

 'Air': {'Aang': 112} }

ATLA Problem: Solution?

We can break down our task into three steps:

1. Opening/Reading the file

2. Parsing the information from each line

3. Adding to our result dictionary

Opening Files in Python

filename = 'character_info.txt'
with open(filename) as f:

CODE HERE
In this case we want to deal with each line from our file,
so we can say for line in f: to iterate over each line of the file

FILE READING CHEAT SHEET

https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1204/handouts/py-file.html

Parsing Information From Each Line

filename = 'character_info.txt'
with open(filename) as f:
 for line in f:
 line = line.strip() # strips any whitespace and newline character

 parts = line.split('-') # separates line into a list (called parts) by the ‘-’ delimiter

 name = parts[0] # parts = [‘Katara’, ‘14’, ‘Water’], we can grab each part by indexing into the list

 age = parts[1]
 nation = parts[2]

Time to Nest the Dictionaries!

filename = 'character_info.txt'
with open(filename) as f:
 result = {} # We need to first declare our result dictionary that we will be returning!
 for line in f:
 line = line.strip()
 parts = line.split('-')
 name = parts[0]
 age = parts[1]
 nation = parts[2]
 if nation not in result: # We first must check if the key is in our outer dictionary or not

 result[nation] = {} # So we add the nation as a new key with a default value (another dictionary!)
 inner_dict = result[nation] # Let’s pull the inner dictionary from our outer one so we can better access it
 inner_dict[name] = int(age) # Add the age (as a number!) to our inner dictionary

Time to Nest the Dictionaries!

filename = 'character_info.txt'
with open(filename) as f:
 result = {} # We need to first declare our result dictionary that we will be returning!
 for line in f:
 line = line.strip()
 parts = line.split('-')
 name = parts[0]
 age = parts[1]
 nation = parts[2]
 if nation not in result: # We first must check if the key is in our outer dictionary or not

 result[nation] = {} # So we add the nation as a new key with a default value (another dictionary!)
 result[nation][name] = int(age) # This also works!! We grab the nested dict with result[nation] first
return result

And that’s all!

Congrats! You are now the
next Mark Zuckerberg!

Questions?

