

CS1951A: Data Science Lecture 14: Introduction to Machine Learning

Lorenzo De Stefani Spring 2022

Outline

- ML "preliminaries" terminology, basic building blocks, conceptual background
- Choosing the candidate models/predictors
- Evaluating the performance of a ML algorithm
- Supervised vs unsupervised learning
- Clustering with K-means

Data: records selected from underlying population

- Can be anything. Usually, data size of available data and/or representation is the limiting factor.
- Generally, we assume that the data available is a randomly selected "sample" of a larger population
- Data point assumed to be selected independently and uniformly at random
- Often called the learning or training sample

GOAL: Use the data to select a model/function that can be used for our task and that generalized to the larger underlying population

- We want to learn insights that still hold true for the overall population, not just the observed part
- Avoid overfitting to the sample

Data: browsing/clicking history

Modeled as vectors whose features represent information E.g., attributes of user, clicks per ads, has photos....

Prediction Target

- Goal = Increase consumption of advertisment for your website
- Objective function....ideas?
 - Time spent on site (avg. per user/total)
 - Number of users
 - Number of pages read (need to define "read")
 - Number of ads clicked on
 - Time per page
 - Pages shared...

Loss function

- Let us say the goal of my ML task is to design a predictor that for a given ad gives me a guess of the number of clicks that it will receive
- The loss function will be the error of the prediction with respect to the true value
 - Absolute/quadratic differece

- Data = Information on ads comsumption collected using user browsing data
- Think of it as "examples" to learn from. Generally called training data
- The information expressed in them is what our learning algorithms will base its decision on which is a good predictor

• Examples:

- Article topic
- Recency (minutes since release)
- Words in title/snippet
- Presence of photo
- Reading level
- Fonts/layouts
- User location
- Topics of articles the user has read previously
- Number of likes

Clicks	Recency	Reading Level	Photo	Title
10	1.3	11	1	"New Tax Guidelines"
1000	1.7	3	1	"This 600lb baby…"
1000000	2.4	2	1	"18 reasons you should <i>never</i> look at this cat unless you"
1	5.9	19	0	"The Brothers Karamazov: a neo-post- globalist perspective"

Clicks	Recency	Reading Level	Photo	Title
10	1.3	11	1	"New Tax Guidelines"
1000	1.7	3	1	"This 600lb baby"
1000000	2.4	2	1	"18 reasons you should <i>never</i> look at this cat unless you"
1	5.9	19	0	"The Brothers Karamazov: a neo-post- globalist perspective"

Y: What we are constructing a predictor for

• Think of it as our independent variable

Clicks	Recency	Reading Level	Photo	Title
10	1.3	11	1	"New Tax Guidelines"
1000	1.7	3	1	"This 600lb baby…"
100000 0	2.4	2	1	"18 reasons you should <i>never</i> look at this cat unless you"
1	5.9	19	0	"The Brothers Karamazov: a neo- post-globalist perspective"

X: the input of the predictor *f* we are building

• Our independent variables

$$Y = f(X)$$

numeric features — defined for (nearly) every row

Clicks	Recency	Reading Level	Photo	Title
10	1.3	11	1	"New Tax Guidelines"
1000	1.7	3	1	"This 600lb baby…"
1000000	2.4	2	1	"18 reasons you should <i>never</i> look at this cat unless you"
1	5.9	19	0	"The Brothers Karamazov: a neo-post- globalist perspective"

boolean features — 0 or 1 (dummy variables)

Clicks	Recency	Reading Level	Photo	Title
10	1.3	11	1	"New Tax Guidelines"
1000	1.7	3	1	"This 600lb baby"
1000000	2.4	2	1	"18 reasons you should never look at this cat unless you"
1	5.9	19	0	"The Brothers Karamazov: a neo-post- globalist perspective"

Strings and text

Clicks	Recency	Reading Level	Photo	Title
10	1.3	11	1	"New Tax Guidelines"
1000	1.7	3	1	"This 600lb baby…"
1000000	2.4	2	1	"18 reasons you should <i>never</i> look at this cat unless you"
1	5.9	19	0	"The Brothers Karamazov: a neo-post- globalist perspective"

strings and boolean features — 0 or 1 ("dummy" variables)

Clicks	Recency	Reading Level	Photo	Title: "new"	Title: "tax"	Title: "this"	Title: "…"	
10	1.3	11	1	1	0	0	0	
1000	1.7	3	1	0	0	1	1	
10000 00	2.4	2	1	0	0	1	1	•••
1	5.9	19	0	0	0	0	0	

sparse features — 0 for most entries

Clicks	Recency	Reading Level	Photo	Title: "new"	Title: "tax"	Title: "this"	Title: "…"	
10	1.3	11	1	1	0	0	0	
1000	1.7	3	1	0	0	1	1	
10000 00	2.4	2	1	0	0	1	1	
1	5.9	19	0	0	0	0	0	

Objective/Loss Function = squared difference between predicted total number of clicks and actual total number of clicks

Family of predictors

Arbitrarily complex predictor

Linear predictor

Polynomial predictor

We need to set the possible functions/predictors among which we will choose a **best predictor**

- Referred as "Family of candidate predictors/functions"
- Can be finite or infinite
 - E.g., half-planes, polygons, non-linear modes,...
- Our choice of the candidate family of functions introduces selection bias
 - We can only select a predictor among those we are looking for!

 How "complex" should the candidate predictors we evaluate be?

 How "complex" should the candidate predictors we evaluate be?

- Intuition: the complexity of a model, or a class or models, is tied to how expressive it can be
 - How "complicated/complex" is the function they compute/realize
 - How many "special cases" it can accommodate
- Many different notions of complexity in the ML literature:
 - Cardinality, degree of polynomial, VC dimension, Rademacher complexity,.....

- The more complex the model, the more expressive
 - Captures more details about the model
- The more complex the model, the harder it is to "learn it"
 - The more examples we need to see
 - The more information we need to acquire
- While using complex models may seem appealing, we incur in the risk of overfitting to the data
 - We need to observe a high number of examples to have the same guarantees as if we had simpler models

ML: From a practical point of view

- Input data/features need to be concrete and representable.
- Definition of "success" needs to be quantifiable

 Generally, should be expressed as a
 differentiable mathematical function
- Learning algorithm should be feasible
 - Run in polynomial time with respect to the number of models being considered, the amount of data points in the training set and/or some parameters od the task

ML: From a probabilistic point of view

- We need to have reasonable assumptions on the data acquisition mechanism
 - Independent/identically distributed samples
- Success tied to a notion of "generalizability"
 - Insight obtained on the sample should also hold generalize- for the entire population
 - E.g, suppose we want to select a predictor f^* for a value μ of interest using the training data
 - In Statistical Learning (PAC learning) we desire guarantees of the type

$$P(|\mu-f^*| > \epsilon) \leq \delta$$

- ϵ accuracy: how much error we are tolerating
- $\delta \in (0,1)$ confidence: the probability of our prediction being correct

Classification and Regression

The predictor partitions the points in classes

- Assigns a "label" associate with the class
 - Discrete output
- Binary classification with two classes
 - E.g., "clicked, not clicked"

f(reading level) = {clicked, not clicked}

• Multi-class classification

The predictor provides an actual estimate of the value of interest

- Returns real values
- $clicks = m(reading_level) + b$
- *m* and *b* are the parameters of the model to be estimated

Evaluating the performance of a predictor

- Once I select a classifier/predictor from my class I may want to evaluate or validate its performance
- This operation should always be performed using data distinct from that used to select (train) the model itself!
 - "Train" using training data
 - "Validate" using test/validation data
 - Both sets are assumed to be obtained from the same random process/population

Generally, the ML algorithm will select the predictor that minimizes the training error.....

....hoping that it will then exhibit similar (hence, low) test error

What can we expect for E_R and E_T ?

a) $E_R \ge E_T$ b) $E_T > E_R$ c) $|E_R - E_T| > 0$ d) E_R and E_T are roughly the same with some noise perturbation

What can we expect for E_R and E_T ?

- $E_R \ge E_T$
- $E_T > E_R$
- $\bullet ||E_R E_T|| > 0$

If your model isn't "right" yet (i.e. in practice, most of the time)

- We have not observed enough training points
- E_R and E_T are roughly the same with some noise perturbation

What can we expect for E_R and E_T ?

• E_R and E_T are roughly the same with some noise perturbation

Once we observe enough training point and we have "learnt well" Ideally we would like to bound the likelihood of observing errors $P(|E_T - E_R| > \epsilon) \le \delta$

In general, for good ML algorithms we have $E[E_T - E_R] = 0$

Generalization guarantees

• Generalization error:

$$E_G = |E_{train} - E_{test}|$$

• Statistical learning theory provides the tools to characterize the distribution of E_G

$$P(E_G > \epsilon) < \delta$$

 The distribution we can claim depends on parameters which capture the complexity of the class of models we are considering

Generalization guarantees

- These bounds are often rather pessimistic when compared with actual performance of ML algorithms
 - They state a much higher requirement for number of observations
 - They state much weaker guarantees than those observed
- Still, very important tool! We want to guarantee that something is going to work!

Complexity and overfitting

The more complex the possible models, the more likely we are to observe a large discrepancy between E_R and E_T

- The more complex the model, the more we tend to overfit to the training data
- In other words, we need more training samples to "learn well"

Overfitting

- Models are likely to overfit when the model is more "complex" than is needed to explain the variation we care about
- "Complex" generally tied to the number of parameters (i.e., features)
- When the number of parameters is >= the number of observations, you can trivially memorize your training data, often without learning anything generalizable to test time