
Small Programming Language Project
Instructions

1. Project Introduction

Project Title: Writing an Interpreter

Main Objective: Build a parser and interpreter for a simple programming language with

arithmetic, variables, and functions.

General Skills:

Practice with version control systems

Group work collaboration

Implementation of software design patterns

Open-ended project planning

Specific Skills:

Building understanding of how programming languages are implemented

Learning about lexers, symbol tables, and abstract syntax trees.

Optional "Stretch" Skills:

Learning about static type checking

Advanced error/exception handling

2. General Requirements & Restrictions

Team Structure

Teams will have 3 members

All members must contribute, verified by peer evaluations and GitHub history

Version Control

Teams must use GitHub project management tools

Projects should be broken down into discrete tasks. These tasks will be managed &

assigned using GitHub and tracked from planning through completion

Regular commits/pull requests from feature branches expected

Technical Requirements



All code must be written in Java (firm requirement)

Timeline

First proposal due: March 7

Feedback provided by: March 19

Required check-in meeting by: April 11 (to review planning & design choices)

Project code due: May 12

Project presentations to TAs: Until May 13 (can be scheduled after May 1 with group & TA

discretion)

Documentation

All code must be documented with comments and tests

Fully featured JavaDocs included as optional "completeness" feature

Work with outside resources (books, websites, LLMs/Copilot) is permitted but must be

cited

3. Specific Requirements for this Project

Technical Components

Students will be responsible for producing a program called SPROLARunner.java (Small

Programming Language) which takes in a command-line argument. This argument will be the

name of a file that contains an example of a SPROLA program which will be lexed, parsed,

interpreted, and executed.

Lexer

This is a program that converts a file into a series of lexical tokens. Lexers break source code

down into the individual pieces that make up a program—identifiers, literals, brackets, function

calls, etc.—without having any control over the behavior of the program. A lexer can be thought

of as a kind of stream or iterator which returns successive tokens as long as they are available

and complains when some content of the file is not compatible with the grammar (syntax) of the

program.

Parser

The parser is a program that consumes tokens from the lexer and builds an abstract syntax tree

(AST). An AST is a data structure like an expression tree which represents the semantic

structure of the program. The AST is built by creating nodes for each of the tokens consumed

and arranging them together so that the interpreter (next step) can traverse the tree and

execute the underlying instructions.

Interpreter



The interpreter is a program that maintains a symbol table as it traverses through an AST to

execute the instructions that make up the program. The interpreter will actually perform the

computations and instructions laid out in the original program.

Error Handling

All errors should be reported with clean, descriptive printed messages that include:

Syntax Errors

Incomplete expressions

Invalid token sequences

Variable Reference Errors

Using variables before assignment

Using variables outside of their scope

Function Reference Errors

Calling undefined functions

Wrong number of arguments

The messages can include as much or as little information as you like, but they should describe

at a minimum the kind of problem encountered. No exception handling is necessary.

User Interface

The final program should be runnable by executing java SPROLARunner <my_file>. The file
should be executed end-to-end without further intervention.

Required Project Features

Native Java implementation of Lexer, Parser, and Interpreter

Use of two or more design patterns

Execution as noted above.

Optional Features

Exception handling

Implementation of text types or array types

Type checking (i.e. identifying errors about mismatched function inputs or invalid

operations for added types at the parser level rather than at the interpreter level in order

to prevent programs crashing while running.)

4. Evaluation Scheme

Code Quality

80% testing coverage required



Commented code required

Documentation

Design document with class diagrams for all included classes

Presentation

Required sections:

Project design

Initial project plans

Choices made for optional requirements

Project demo

Challenges faced/project retrospective

TA Q&A

Team Assessment

Peer evaluation via Google form

5. Other Resources

Visitor Design Pattern, potentially useful for interpreting an AST

Factory Design Pattern, potentially useful for creating Nodes in the AST

State Design Pattern, potentially useful for building the interpreter

Book about Compilers, freely accessible through Penn Libraries.

You're writing an interpreter, not a compiler, so not everything is relevant. Should be

helpful for understanding lexers, parsers, ASTs, symbol tables, etc.

https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/state
https://learning.oreilly.com/library/view/engineering-a-compiler/9780080916613/

