

CS1951A: Data Science

Lecture 2: Database design and SQL

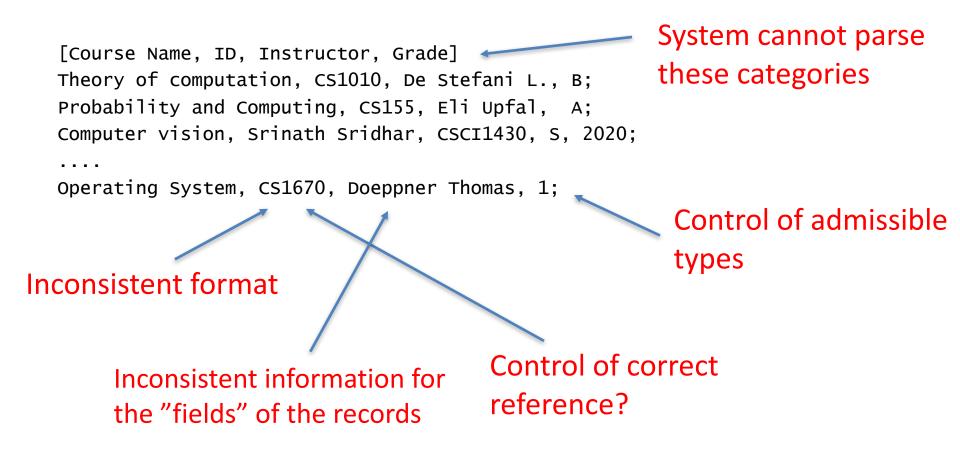
Lorenzo De Stefani Spring 2022

Outline

- Database design principles
- Why databases?
- Four main phases of database design
- Book of duty
- Entity relation model
- Physical layer

What are databases?

- Data structures meant to store structured data allowing easy access to users
- We want:
 - Scalability: Modern database need to handle efficiently tens of billions of records
 - Integrity: Consistent data, no unwanted repetitions, uniform formatting
 - Ease of update & of access: It must be possible to add, remove, update and access record efficiently and while preserving integrity
 - Allow for concurrent accesses by multiple users


Do we really need databases?

Could we just use plain files?

.... they are so simple!!!

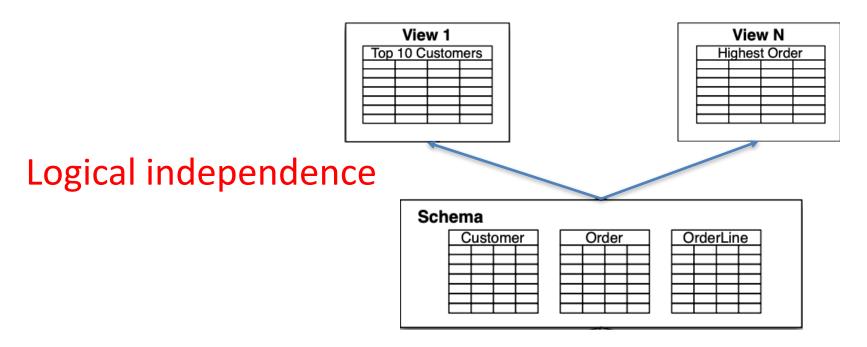
.... perhaps too simple to ensure our goals!

Reason 1: Data consistency

Reason 2: Scalability

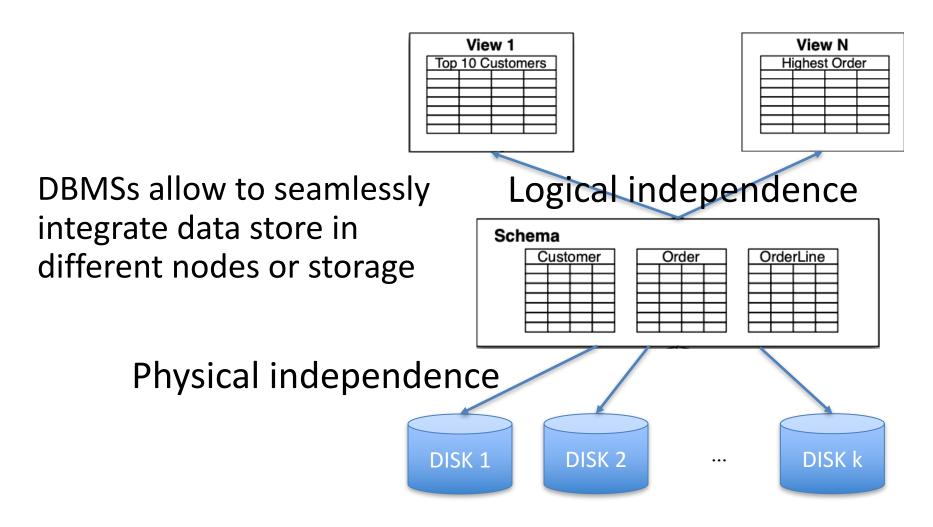
Modern Data Base Management Systems (DBMSs) need to handle billions of records stored using hundreds of terabytes of data (and growing)

- We need optimized implementations on single computing nodes
- Single node implementations are not efficient
- Data must be distributed over many (100s-1000s) of nodes managed by (DBMSs)

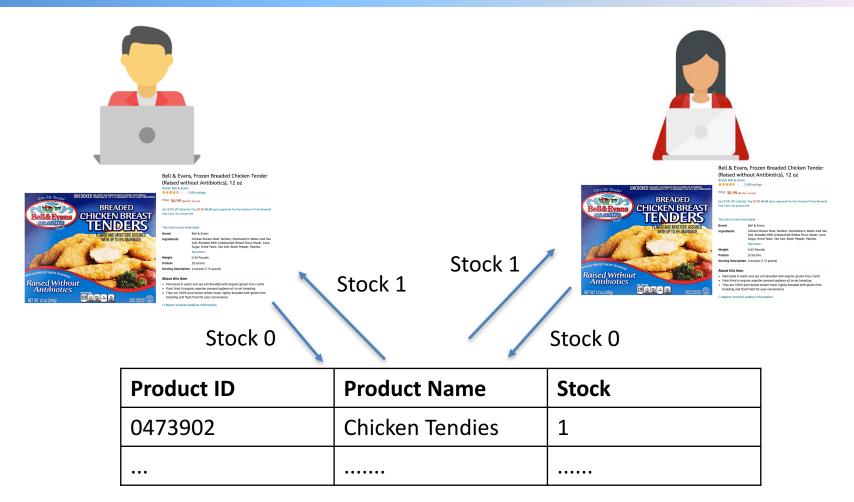

Reason 3: Data Access

```
[Course Name, ID, Instructor, Grade]
Theory of computation, CS1010, De Stefani L., B;
Probability and Computing, CS155, Eli Upfal, A;
Computer vision, Srinath Sridhar, CSCI1430, S, 2020;
....
Operating System, CS1670, Doeppner Thomas, 1;
Data Science, CS1951A, Lorenzo De Stefani, B
```

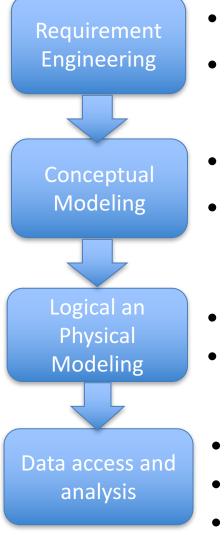
Query: "Find all courses taught by Lorenzo De Stefani"


- Practicality issues: we have to design a program to parse the file and retrieve the information
- Efficiency issues: we need to read the entire file to answer the query

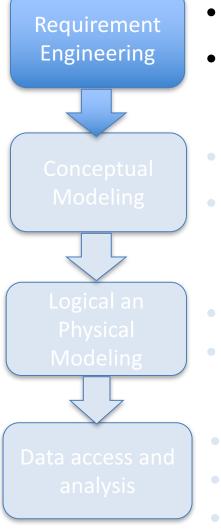
Reason 4: Data independence



DBMSs allow to easily present the data in specific representations (view) selected by a given query


Reason 4: Data independence

Reason 5: Concurrent access



DBMS ensure correctness while allowing concurrent access to multiple users

- "Book of duty"
- Understand and model the "world" of interest
- Conceptual DB design
- Entity Relations (ER) method

- Logical design (schema, table names, data types)
- Physical design (index, hints, memory organization)
- Asking and answering questions (queries)
- Extract information form the DBMS (views)
- SQL and relational algebra

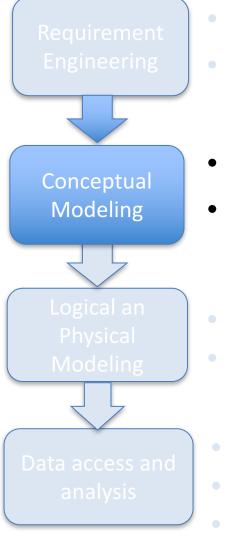
- "Book of duty"
- Understand and model the "world" of interest
 - Conceptual DB design
 - Entity Relations (ER) method

- Logical design (schema, table names, data types)
- Physical design (index, hints, memory organization)
- Asking and answering questions (queries) Extract information form the DBMS (views) SQL and relational algebra

Book of duty

A description of the population of the database system and the desired mean of access/interaction

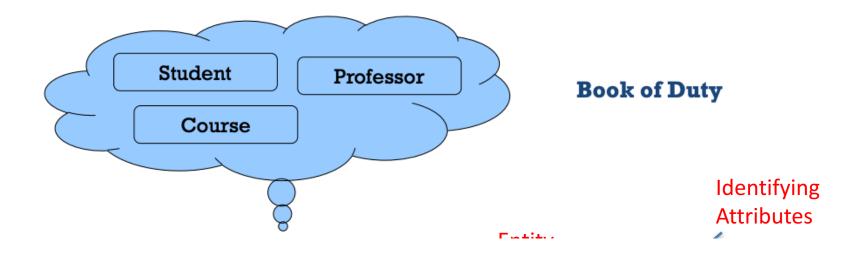
- Description can be informal but should be detailed
- Describe information requirements
 - What are the items in the populations
 - Eg., items for sale, records of sale, entries in a transcript
 - Which are the concepts that should be represented?
 - E.g., items, storage facilities, students, courses
 - What are the attributes of the concepts
 - E.g., price, color, availability, grade
 - What are the domains of attributes of objects?
 - E.g., letters, integer numbers, dates
 - How are objects identified/referenced?
 - E.g., BannerID, DOI, SSN
 - Are there relationships between concepts? What is their nature?
 - E.g., authorship, manufacturer, distributor, publisher,...

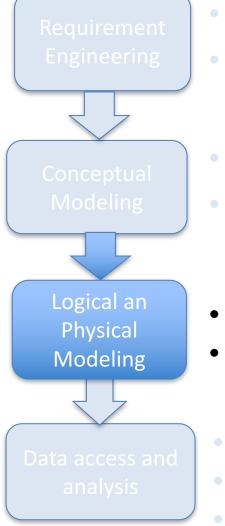

Book of duty

- Describe processing requirements
 - Cardinalities: how many items is the system expected to manage?
 - E.g. # students university database, # items online shop, # number movies on a streaming platform;
 - Estimates rather than exact values: meaningful as guidelines
 - Distributions
 - E.g., grade distributions in a class, number of order request through the day
 - Workload
 - Read/write frequency
 - Priorities and service level agreements
 - Are there different tiers of users?
 - What guarantees on the service should be ensured?
 - Privacy of users and records

Practice time

Come up with a example Book of Duty for the records of students in the CS department


- Concepts
- Attributes:
- Types of data:
- Identifiers:
- Relationships between concepts:
- Cardinalities
- Workload
- Priorities and service level agreements



- "Book of duty"
- Understand and model the "world" of interest
- Conceptual DB design
- Entity Relations (ER) method

- Logical design (schema, table names, data types) Physical design (index, hints, memory organization)
- Asking and answering questions (queries) Extract information form the DBMS (views) SQL and relational algebra
 - CSCI 1951A Data Science Spring'22 Lorenzo De Stefani

Conceptual modeling

- "Book of duty"
- Understand and model the "world" of interest
 - Conceptual DB design
 - Entity Relations (ER) method

- Logical design (schema, table names, data types)
- Physical design (index, hints, memory organization)
- Asking and answering questions (queries) Extract information form the DBMS (views) SQL and relational algebra

Logical and Physical costraint

Student ID	Name	
0473902	Jack	
9408545	Adam	
7576463	Sumiko	

Table: Student

Student ID	Class ID	
0473902	CS101	
9408545	CS145	
7576463	CS019	

Table: Attendance

Instructor	tor Class ID	
De Stefani	CS101	
Upfal	CS145	
Krishamurti	CS019	

Table: Teaching

Logical Design

- Table / column names
- Data types
- Constraints
- •

Data Definition: Data Types

- Numeric: INT, FLOAT, REAL, DOUBLE
- Character Strings: CHAR(n), VARCHAR(n), CLOB(size)
 - CHAR is fixed with, VARCHAR is not
 - CLOB(2MB) for large objects e.g. documents/web pages
- Bit Strings: BIT(n), BIT VARYING(n), BLOB
 - BLOB(20MB) e.g. for images
- Boolean
- Dates: DATE, TIME, TIMESTAMP, TIME WITH TIME ZONE
- Opportune choice of data type leads to improved performance and better memory utilization

https://www.w3schools.com/sql/sql_datatypes.asp

Logical and Physical constraint

Student ID	Name	
0473902	Jack	
9408545	Adam	
7576463	Sumiko	

Table: Student

Student ID	Class ID	
0473902	CS101	
9408545	CS145	
7576463	CS019	

Table: Attendance

Instructor	or Class ID	
De Stefani	CS101	
Upfal	CS145	
Krishamurti	CS019	

Table: Teaching

Physical Design

- Indexes to speed up retrieval
- Memory layout
- Compression
- Distribution on multiple machines

• ...

- Book of duty
- Understand and model the "world" of interest
 - Conceptual DB design
 - Entity Relations (ER) method

- Logical design (schema, table names, data types)
- Physical design (index, hints, memory organization)
- Asking and answering questions (queries)
- Extract information form the DBMS (views)
- SQL and relational algebra

How to ask questions

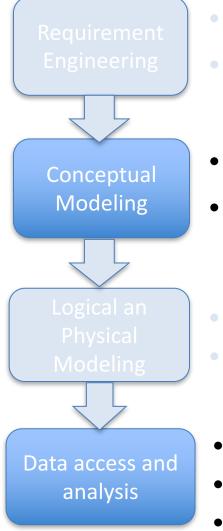
Data managed in DBMS are accessed by stating of "questions" or queries

• E.g., "How many students attended CS145 in 2019?"

Student ID	t ID Name	
0473902	Jack	
9408545	Adam	
7576463	Sumiko	

Table: Student

Student ID	Class ID	AA
0473902	CS101	2020
9408545	CS145	2019
7576463	CS019	2018


We will consider mostly as SQL queries SELECT COUNT(*)

FROM Student s, Attendance a WHERE s.StudentID=a.StudentID AND a.CourseID='CS145' AND a.CourseID='2019'

 Queries formulated using Relational Algebra

Table: Attendance

Plan for next time

- "Book of duty"
- Understand and model the "world" of interest
- Conceptual DB design
- Entity Relations (ER) method

- Logical design (schema, table names, data types) Physical design (index, hints, memory organization)
- Asking and answering questions (queries)
- Extract information form the DBMS (views)
- SQL and relational algebra