Module IV

Process M anagement:
Coordination And Synchronization

CS354 —module 4 1 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Process Coordination In The Hierarchy

CS354 —module 4 2 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Coordination Of Processes

e |snecessary in aconcurrent system
e Avoids conflicts when multiple processes access shared items
e Allows aset of processes to cooperate
e (Can also be used when
— A process walits for 1/0
— A process waits for another process

e An example of cooperation among processes. UNIX pipes

CS354 —module 4 3 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Approaches To Process Coordination

e Use a hardware mechanism
— Most useful /important on multiprocessor hardware
— Often relies on busy waiting

e Use an operating system mechanism
— Works well with single processor hardware

— Does not entall unnecessary execution

Note: we will mention hardware quickly, and focus on operating system mechanisms

CS354 —module 4 4 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Key Situations That Process
Coordination M echanisms Handle

e Producer/consumer interaction

e Mutual exclusion

CS354 —module 4 5 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Synchronization

e Typical scenario: a FIFO buffer shared by multiple processes

— Processes that deposit items into the buffer are called producers

— Processes that extract items from the buffer are called consumers
e The programmer must guarantee

— When the buffer is full, a producer will block until space is available

— When the buffer is empty, a consumer will block until an item has been deposited
e A given process may act as a consumer for one buffer and a producer for another

e Example: in Unix pipeling, a process may read input from one pipe and write output to
another

cat enpl oyees | grep Name: | sort

CS354 —module 4 6 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mutual Exclusion

e |n aconcurrent system, multiple processes may attempt to access shared data items

e |f one process starts to change a data item and then a context switch allows another
process to run and access the data item, the results can be incorrect

e \We use the term atomic to refer to an operation that is indivisible (i.e., the hardware
performs the operation in a single instruction that cannot be interrupted)

e Many data operations are non-atomic, which means a sequence of multiple operations
are used to change a data item

e Programmers must take steps to ensure that when one process executes a sequence of
operations to change a data item, no other process can attempt to make changes
concurrently

CS354 —module 4 7 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Recall

e FEventrivia changesto a shared variable (e.g., x++) can require a sequence of hardware
operations

e Anyone working with concurrent processes must guard every access to shared data
items

8 Spring, 2024

CS354 —module 4
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

To Prevent Problems

e A programmer must ensure that only one process accesses a shared item at any time
e Genera approach
— Once a process obtains access, make all other processes wait

— When a process finishes accessing the item, grant access to one of the waiting
Processes

e Three technigques are available
— Hardware mechanisms that disable and restore interrupts
— Hardware spin lock instructions

— Semaphores (Implemented in software)

CS354 —module 4 9 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Handling Mutual Exclusion With Spin L ocks

e Used in multicore CPUs; does not work for a single processor

e A special hardware operation allows a core to test and/or set a special lock atomically

e Thelock may consist of special hardware or may be a location in memory

e The hardware guarantees that only one core will be allowed to set the lock at any time
e The mechanism is known as a spin lock because a core uses busy waiting to gain access

e Busy waiting literally means the core executes a loop that tests the spin lock repeatedly
until access is granted

e The approach was once known as test-and-set

CS354 —module 4 10 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of A Spin Lock (x86)

e An instruction performs an atomic compare and exchange (cmpxchg)
e Spin loop: repeat the following
— Place an “unlocked” value (e.g., 0) in register eax
— Place a“locked” value (e.g., 1) in register ebx
— Place the address of a memory location to be used as a lock in register ecx
— Execute the cmpxchg instruction

— Register eax will contain the value of the lock before the compare and exchange
occurred

— Continue the spin loop as long as eax contains the “locked” value

e To release the lock, assign the “unlocked” value to the lock location in memory

CS354 —module 4 11 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Spin Lock Code For X86 (Part 1)

/* mutex.S - nutex | ock, nutex unlock */

. text
. gl obl mutex_ | ock
. gl obl nmut ex_unl ock

/2
* mutex | ock(uint32 *lock) ~-- Acquire a |lock
*_ _ .. - - - - - e b e e e Y e Y Y e Y e Y L L L G
*/
nmut ex_| ock:
/* Save registers that will be nodified */
pushl Yeax
pushl %ebx
pushl %ecx
CS354 —module 4 12

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Spring, 2024

Example Spin Lock Code For X86 (Part 2)

spi nl oop:
nov| $0, %eax /* Place the "unl ocked" val ue in eax */
nov| $1, %ebx /* Place the "| ocked" val ue in ebx */
nmov| 16(%sp), %cx [* Place the address of the lock in ecx */
| ock cnpxchg %&bx, (%cx) /[* Atom c conpare-and- exchange: */
/* Conpare %ax with nenory (%ecx) */
/* i f equal */
[* | oad %&bx in nenory (%ecx) */
/* el se */
[* | oad %&bx in %ax */

/* If eax is 1, the nutex was | ocked, so continue the spin |oop */

cnp $1, %ax
je spi nl oop

/* We hold the | ock now, so pop the saved registers and return */

popl Yecx
popl %ebx
popl Yeax
ret
CS354 —module 4 13 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Spin Lock Code For X86 (Part 3)

* |
mut ex_unl ock:

/* Save register eax */
pushl Yeax

/* Load the address of |ock onto eax */

nmovl| 8(%sp), Yeax
/* Store the "unl ocked" value in the |ock, thereby unlocking it */
nmov| $0, (% ax)
/* Restore the saved register and return */
popl Yeax
ret
CS354 —module 4 14 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Handling Mutual Exclusion With Semaphores

e A programmer must allocate a semaphore for each item to be protected

e The semaphore acts as a mutual exclusion semaphore, and is known colloguially as a
mutex semaphore

e All applications must be programmed to use the mutex semaphore before accessing the
shared item

e The operating system guarantees that only one process can access the shared item at a
given time

e The implementation avoids busy waiting

CS354 —module 4 15 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definition Of Critical Section

e Each piece of shared data must be protected from concurrent access
e A programmer inserts mutex operations

— Before access to the shared item

— After access to the shared item
e The protected code is known as a critical section

e Mutex operations must be placed in each function that accesses the shared item

CS354 —module 4 16 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mutual Exclusion Inside An Operating System

e Several possible approaches have been used

e Examples: allow only one process at a time to
— Run operating system code
— Run a given operating system function

— Access a given operating system component (a single component may comprise
multiple functions)

e Allowing more processes to execute concurrently increases performance

e The general principleis:

to maximize performance, choose the smallest possible
granularity for mutual exclusion

CS354 —module 4 17 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ow-L evel Mutual Exclusion

e Mutual exclusion is needed in two places
— In application processes
— Inside the operating system

e On asingle-processor system, mutual exclusion can be guaranteed provided that no
context switching occurs

e A context switch can only occur when
— A device interrupts
— A process calls resched

e | ow-level mutual exclusion technique: turn off interrupts and avoid rescheduling

CS354 —module 4 18 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Interrupt Mask

e A hardware mechanism that controls interrupts
e |[mplemented by an internal machine register, and may be part of processor status word

e On some hardware, a zero value means interrupts can occur; on other hardware, a non-
zero value means interrupts can occur

e The OScan
— Examine the current interrupt mask (find out whether interrupts are enabl ed)
— Set the interrupt mask to prevent interrupts

— Clear the interrupt mask to allow interrupts

CS354 —module 4 19 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Masking Interrupts

e |mportant principle:

No operating system function should contain code to explicitly
enable interrupts.

e Technique used: a given function

— Saves the current interrupt status

— Disables interrupts

— Proceeds through a critical section

— Restores the interrupt status from the saved copy
e Key insight: save/restore allows nested calls

CS354 —module 4 20 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Why Interrupt Masking I's I nsufficient

It works! But...
Stopping interrupts penalizes all processes when one process executes a critical section

— It stops all | /O activity (and some device interrupts must be serviced within a
specifies period)

— It restricts execution to one process for the entire system

Disabling interrupts can interfere with the scheduling invariant and lead to a priority
Inversion where a low-priority process prevents execution of a high-priority process for
which | /O has completed

Disabling interrupts does not provide a policy that controls which process can access a
critical section at a given time

When used, a programmer must minimize the amount of time interrupts remain disabled

CS354 —module 4 21 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

High-Level Mutual Exclusion

e Theldeaisto create an operating system facility with the following properties
— Permit applications to define multiple, independent critical sections

— Allow processes to compete for access to each critical section independent of other
critical sections

— Provide an access policy that specifies how waiting processes gain access

e (Good news:. a single mechanism, the counting semaphore, solves the problem

CS354 —module 4 22 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Counting Semaphore

e An operating system abstraction

e An instance can be created dynamically

e Each instance is given a unique name
— Typicaly an integer
— Known as a semaphore ID

e An instance consists of a 2-tuple (count, set)
— Count Is an integer

— Setisaset of processes that are waiting on the semaphore

CS354 —module 4 23 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Operations On Semaphores

e (Create a new semaphore
e Delete an existing semaphore
e \Wait on an existing semaphore
— Decrements the count
— Adds the calling process to set of waiting processes if the resulting count is negative
e Sgnal an existing semaphore
— Increments the count

— Makes a process ready if any are waiting

CS354 —module 4 24 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semaphore Functions

semid = semcreate(initial_count) Creates a semaphore and returns an 1D
semdelete(semid) Deletes the specified semaphore
wait(semid) Waits on the specified semaphore

signal(semid) sighals the specified semaphore

CS354 —module 4 25 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Key Uses Of Counting Semaphores

e Semaphores have many potential uses

e However, using semaphores to solve complex coordination problems can be
Intellectually challenging

e We will consider two straightforward ways to use semaphores
— Cooperative mutual exclusion

— Producer-consumer synchronization (direct synchronization)

CS354 —module 4 26 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Cooperative Mutual Exclusion With Semaphores

e A set of processes use a semaphore to guard a shared item
e [nitialize: create a mutex semaphore

sid = sencreate(1l);

e Use: bracket each critical section in the code with calls to wait and signal

wait (sid);
...critical section to use the shared 1tem..
signal (sid);

e All processes must agree to use semaphores (hence the term cooperative)

e Only one process will access the critical section at any time (others will be blocked)

CS354 —module 4 27 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Potential Problem: Deadlock

e Consider two processes that use semaphores to protect two data items, x and y

e The two semaphores are created

sem dx = senctreate(l); sem dy = senctreate(l),;

e Then the two processes take the following steps

[* Process 1 */ [* Process 2 */
wait(semidy); deadlock! - wait(semidx);
modify y modify X
signal(semidy); signal (semidx);
finish modifying x finish modifying y
signal (semidx); signal (semidy);

CS354 —module 4 28 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

When Using Semaphores For Mutual Exclusion

e Good news. counting semaphores work well when a set of processes needs exclusive
access to a single resource

e Bad news. using semaphores with multiple resources can be tricky
e To avoid trouble
— Limit mutual exclusion to a single resource at any time, when possible

— When processes must obtain exclusive access to multiple resources, insure that all
processes access and release the resources in the same order

CS354 —module 4 29 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Synchronization With Semaphores

e Two semaphores suffice to control processes accessing a shared buffer
e [nitialize: create producer and consumer semaphores

psem = sencreat e(buffer_size);
csem = sencreat e(0);

e The producer algorithm

repeat forever {
generate an itemto be added to the buffer;
wai t (psem ;
fill _next buffer sl ot;
signal (csem ;

CS354 —module 4 30 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Synchronization With Semaphores
(continued)

e The consumer algorithm

repeat forever {
wait (csem ;
extract from buffer slot;
si gnal (psem ;
handl e the Item

CS354 —module 4 31

Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Interpretation Of Producer-Consumer Semaphores

PRODUCER

next

6
next
CONSUMER
e csem counts the items currently in the buffer
e psem counts the unused dots in the buffer
CS354 —module 4 32 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Semaphore Invariant

e Establishes arelationship between the semaphore concept and its implementation
e Makes the code easy to create and understand

e Must be re-established after each semaphore operation

e |ssurprisingly elegant:

A nonnegative semaphore count means
that the set of processes iIs empty. A
count of negative N means that the set
contains N waiting processes.

CS354 —module 4 33 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Counting Semaphores In Xinu

e Arestored in an array of semaphore entries
e Each entry

— Corresponds to one instance (one semaphore)

— Contains an integer count and pointer to a list of processes
e ThelD of asemaphore isitsindex in the array

e The policy for management of waiting processes is FIFO

CS354 —module 4 34 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Process State Used With Semaphores

e \When a process is waiting on a semaphore, the process is not
— Executing
— Ready
— Suspended
— Receiving
e Note: the suspended state is only used by suspend and resume
e Therefore a new state is needed
e We will use the WAITING state for a process blocked by a semaphore

CS354 —module 4 35 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

CS354 —module 4

State Transitions With Waiting State

send /////’——Q\\\\\‘ receive
signal /////’__\\\\\L wait
WAITING

| (Lwmmve \

resched

CURRENT

suspend

resume //////—l—\\\\\\‘suspend
SUSPENDED J

36
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Spring, 2024

Semaphor e Definitions

/* semaphore.h - isbadsem */

#i f ndef NSEM
#def i ne NSEM
#endi f

120 /* Nunmber of semaphores, if not defined

/* Semaphore state definitions */

#define S FREE O
#define S USED 1

/* Semaphore table entry is avail able
/* Semaphore table entry is in use

/* Semaphore table entry */

struct sentry {
byt e sst at e;
i nt 32 scount ;
gi d16 squeue;

}

Whet her entry is S FREE or S USED

Count for the semaphore

Queue of processes that are waiting
on the semaphore

e e S
* X% ¥ X

extern struct sentry sentab[];

#defi ne i sbadsen(s)

CS354 —module 4

((int32)(s) <0 || (s) >= NSEM

37
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/
*/
*/
*/

Spring, 2024

| mplementation Of Wait (Part 1)

[* wait.c - wait */

#i ncl ude <xi nu. h>

[fccccoccocoococoococooocoocooc0c0c00C00C0CO000CO0CD0C00C00C00C000C00C00000C00C0 000 S
* wait - Cause current process to wait on a senmaphore
K o o o e o e o o e o
*/
syscall wait(
si d32 sem /* Semaphore on which to wait */
)
{ | |
I nt mask nask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process’ table entry */
struct sentry *senptr; /* Ptr to senpahore table entry */
mask = di sabl e();
i f (isbadsemsem) {
rest or e(mask) ;
return SYSERR
}
senptr = &sent ab[sem ;
I f (senptr->sstate == S FREE) {
rest or e(mask) ;
return SYSERR
}
CS354 —module 4 38 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementation Of Wait (Part 2)

if (--(senmptr->scount) < 0) { /* If caller nmust bl ock
prptr = &proctablcurrpid];

prptr->prstate = PR WAIT;

prptr->prsem = semn

enqueue(currpid, senptr->squeue);

resched();

}

rest or e(mask) ;
return OK;

e Moving a process to the waiting state only requires a few lines of code

/* Set state to waiting
/* Record semaphore |ID
/* Enqueue on semaphore
/* and reschedul e

— Set the state of the current process to PR WAIT

— Record the ID of the semaphore on which the process is waiting in field prsem

— Cdll resched

CS354 —module 4

39
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/
*/
*/

Spring, 2024

The Semaphore Queuing Policy

e Determines which process to select among those that are waiting
e [sonly used when signal is called and processes are waiting
e Examples of possible policies

— First-Come-First-Served (FCFS or FIFO)

— Process priority

— Random

CS354 —module 4 40 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Consequences Of A Semaphore Queuing Policy

e Thegoal is“farness’

e Which semaphore queuing policy implements the goal the best?
e |n other words, how should we interpret fairness?

e The semaphore policy can interact with scheduling policy

— Should a low-priority process be allowed to access a resource if a high-priority
process is also waiting?

— Should a low-priority process be blocked forever if high-priority processes use a
resource?

CS354 —module 4 41 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Choosing A Semaphore Queueing Policy

e The choice is difficult

e Thereisno single best answer
— Fairness not easy to define
— Scheduling and coordination interact in subtle ways
— The choice may affect other OS policies

e The interactions of heuristic policies may produce unexpected results

CS354 —module 4 42 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Semaphore Queuing Policy In Xinu

e Xinu uses first-come-first-served
e The approach has several advantages
— Is straightforward to implement
— Isextremely efficient
— Works well for traditional uses of semaphores
— Guarantees al contending processes will obtain access

e The FIFO approach has an interesting disadvantage: a low-priority process can obtain
access to a resource while a high-priority process remains blocked

CS354 —module 4 43 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementation Of Xinu’'s FIFO Semaphore Policy

e Recall: each semaphore has a list of processes
e [or aFIFO palicy, the list is treated as a queue

e When it needs to insert the current process on a list, wait enqueues the calling process
at the tail of the queue

e When it chooses a waiting process to run, signal selects the process at the head of the
gueue

e The code for signal follows

CS354 —module 4 44 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

| mplementation Of Signal (Part 1)

/* signal.c - signal */

#i ncl ude <xi nu. h>

[fccccoccocoococoococooocoocooc0c0c00C00C0CO000CO0CD0C00C00C00C000C00C00000C00C0 000 S
* signal - Signal a semaphore, releasing a process if one is waiting
K o o o e o e o o e o
*/
syscal | signal (
si d32 sem /* I D of semaphore to signal */
)
{ | |
I nt mask nask; /* Saved interrupt mask */
struct sentry *senptr; /* Ptr to senpahore table entry */
mask = di sabl e();
i f (isbadsen(sem) {
rest or e(mask) ;
return SYSERR;
}
senptr= &sent ab[seni;
if (senptr->sstate == S FREE) {
rest or e(mask) ;
return SYSERR;
}
CS354 —module 4 45

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Spring, 2024

|mplementation Of Signal (Part 2)

I f ((senptr->scount++) < 0) { /* Rel ease a waiting process */
ready(dequeue(senptr->squeue));
}

rest or e(mask) ;
return OK;

e Notice how little code is required to signal a semaphore

CS354 —module 4 46 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Possible Semaphore Creation Strategies

e Static

— All semaphores are defined at compile time

— The approach is more efficient, but less powerful
e Dynamic

— Semaphores are created at runtime

— The approach is more flexible

e Xinu supports dynamic semaphore allocation, but to achieve efficiency preallocates a
fixed-size array of possible semaphores

CS354 —module 4 47 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semcreate (Part 1)

/| * sencreate.c - sentreate, newsem */

#1 ncl ude <xi nu. h>

| ocal Si d32 newsen(voi d) ;
| ® o e e e o o e m— e
* sencreate - Create a new semaphore and return the IDto the caller
K o o o e e e e o e Y Y Y e Y e Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y M Y Y Y Y Y e
*/
Si d32 sencr eat e(
| nt 32 count /* Initial semaphore count
{)
i nt mask mask; /* Saved interrupt mask
si d32 sem /* Semaphore IDto return
mask = di sabl e();
if (count < O || ((senm=newsen())==SYSERR)) {
rest or e(mask) ;
return SYSERR;
sent ab[sen] . scount = count; /[* Initialize table entry
rest or e(mask) ;
return sem
}
CS354 —module 4 48

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/

Spring, 2024

Xinu Semcreate (Part 2)

/2
* newsem - Allocate an unused semaphore and return its index
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
| ocal si d32 newsen(voi d)
{
static sid32 next sem = O; /* Next semaphore index to try */
Si d32 sem /* Semaphore ID to return */
i nt 32 | ; /* lterate through # entries */
for (1i=0 ; 1<NSEM; i++) {
sem = next semt+;
I f (nextsem >= NSEM
next sem = O;
I f (sentab[sen].sstate == S FREE) {
sent ab[sen].sstate = S USED,
return sem
}
}
return SYSERR,
}
CS354 —module 4 49 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Semaphore Deletion

e \Wrinkle: one or more processes may be waiting when a semaphore Is deleted
e We must choose how to dispose of each waiting process

e The Xinu disposition policy: if a process is waiting on a semaphore when the
semaphore is deleted, the process becomes ready

CS354 —module 4 50 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semdelete (Part 1)

[* sendel ete.c - sendelete */

#1 ncl ude <xi nu. h>

| ® o L L e o
* sendelete - Delete a semaphore by releasing its table entry
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
syscal | sendel et ¢(
Si d32 sem /* 1D of semaphore to del ete */
{)
| nt mask mask; /* Saved interrupt mask */
struct sentry *senptr; /[* Ptr to semaphore table entry */
mask = di sabl e();
i f (isbadsen(senm)) {
rest or e(mask) ;
return SYSERR;
}
senptr = &sent ab[seni;
i f (senptr->sstate == S FREE) {
rest or e(mask) ;
return SYSERR,
}
senptr->sstate = S FREE;
CS354 —module 4 51

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Spring, 2024

Xinu Semdelete (Part 2)

resched _cnt | (DEFER _START) ;

while (senmptr->scount++ < 0) { /* Free all waiting processes */
ready(getfirst(senptr->squeue));

}

resched cntl| (DEFER _STOP) ;
rest ore(mask) ;
return OK;

e Deferred rescheduling allows all waiting processes to be made ready before any of them
to run

e Before it ends deferred rescheduling, semdel ete ensures the semaphore data structure is
ready for other processes to use

CS354 —module 4 52 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Do you understand semaphores?

CS354 —module 4 53 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Semaphore Behavior (A True Story)

e A process creates a semaphore

mut ex = sencreate(l);

e Three processes then execute the following code

process convoy(char to print)
do forever {
think (1.e., use CPU);
wal t (nut ex) ;
print(char to print);
si gnal (mut ex) ;

}

e The three processes print characters A, B, and C, respectively

CS354 —module 4 54 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Convoy

e Theinitial output is
— 20A’'s, 20B’s, 20 C's, 20 A’s, etc.

e After tens of seconds, however, the output becomes
ABCABCABC...

e Facts
— Everything is correct
— No other processes are executing

— The output Is nonblocking (i.e., it uses polled 1/ 0O)

CS354 —module 4 55 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Convoy
(continued)

e Questions
— How long is thinking time?
— Why does convoy start?
— Wil output switch back given enough time?

— Did knowing the policies or the implementation of the scheduler and semaphore
mechanisms make the convoy behavior obvious?

CS354 —module 4 56 Spring, 2024
Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

e Process synchronization is used in two ways

— Asaservice supplied to applications

— Asan interna facility used inside the OS itself
e | ow-level mutual exclusion

— Masks hardware interrupts

— Avoids rescheduling

— Isinsufficient for all coordination needs

CS354 —module 4 57 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

e High-level process coordination is
— Used by subsets of processes
— Avallable inside and outside the OS
— Implemented with counting semaphore
e Counting semaphore
— A powerful abstraction implemented in software

— Provides mutual exclusion and producer/consumer synchronization

CS354 —module 4 58 Spring, 2024

Copyright 0 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

