
Module IV

Process Management:
Coordination And Synchronization

CS354 – module 4 1 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Location Of Process Coordination In The Hierarchy

CS354 – module 4 2 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Coordination Of Processes

d Is necessary in a concurrent system

d Avoids conflicts when multiple processes access shared items

d Allows a set of processes to cooperate

d Can also be used when

– A process waits for I/O

– A process waits for another process

d An example of cooperation among processes: UNIX pipes

CS354 – module 4 3 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Approaches To Process Coordination

d Use a hardware mechanism

– Most useful /important on multiprocessor hardware

– Often relies on busy waiting

d Use an operating system mechanism

– Works well with single processor hardware

– Does not entail unnecessary execution

Note: we will mention hardware quickly, and focus on operating system mechanisms

CS354 – module 4 4 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Two Key Situations That Process
Coordination Mechanisms Handle

d Producer / consumer interaction

d Mutual exclusion

CS354 – module 4 5 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Synchronization

d Typical scenario: a FIFO buffer shared by multiple processes

– Processes that deposit items into the buffer are called producers

– Processes that extract items from the buffer are called consumers

d The programmer must guarantee

– When the buffer is full, a producer will block until space is available

– When the buffer is empty, a consumer will block until an item has been deposited

d A given process may act as a consumer for one buffer and a producer for another

d Example: in Unix pipeline, a process may read input from one pipe and write output to
another

cat employees | grep Name: | sort

CS354 – module 4 6 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mutual Exclusion

d In a concurrent system, multiple processes may attempt to access shared data items

d If one process starts to change a data item and then a context switch allows another
process to run and access the data item, the results can be incorrect

d We use the term atomic to refer to an operation that is indivisible (i.e., the hardware
performs the operation in a single instruction that cannot be interrupted)

d Many data operations are non-atomic, which means a sequence of multiple operations
are used to change a data item

d Programmers must take steps to ensure that when one process executes a sequence of
operations to change a data item, no other process can attempt to make changes
concurrently

CS354 – module 4 7 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Recall

d Even trivial changes to a shared variable (e.g., x++) can require a sequence of hardware
operations

d Anyone working with concurrent processes must guard every access to shared data
items

CS354 – module 4 8 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

To Prevent Problems

d A programmer must ensure that only one process accesses a shared item at any time

d General approach

– Once a process obtains access, make all other processes wait

– When a process finishes accessing the item, grant access to one of the waiting
processes

d Three techniques are available

– Hardware mechanisms that disable and restore interrupts

– Hardware spin lock instructions

– Semaphores (implemented in software)

CS354 – module 4 9 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Handling Mutual Exclusion With Spin Locks

d Used in multicore CPUs; does not work for a single processor

d A special hardware operation allows a core to test and/or set a special lock atomically

d The lock may consist of special hardware or may be a location in memory

d The hardware guarantees that only one core will be allowed to set the lock at any time

d The mechanism is known as a spin lock because a core uses busy waiting to gain access

d Busy waiting literally means the core executes a loop that tests the spin lock repeatedly
until access is granted

d The approach was once known as test-and-set

CS354 – module 4 10 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Of A Spin Lock (x86)

d An instruction performs an atomic compare and exchange (cmpxchg)

d Spin loop: repeat the following

– Place an “unlocked” value (e.g., 0) in register eax

– Place a “locked” value (e.g., 1) in register ebx

– Place the address of a memory location to be used as a lock in register ecx

– Execute the cmpxchg instruction

– Register eax will contain the value of the lock before the compare and exchange
occurred

– Continue the spin loop as long as eax contains the “locked” value

d To release the lock, assign the “unlocked” value to the lock location in memory

CS354 – module 4 11 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Spin Lock Code For X86 (Part 1)

/* mutex.S - mutex_lock, mutex_unlock */

.text

.globl mutex_lock

.globl mutex_unlock

/*--
* mutex_lock(uint32 *lock) -- Acquire a lock
*--
*/

mutex_lock:

/* Save registers that will be modified */

pushl %eax
pushl %ebx
pushl %ecx

CS354 – module 4 12 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Spin Lock Code For X86 (Part 2)

spinloop:
movl $0, %eax /* Place the "unlocked" value in eax */
movl $1, %ebx /* Place the "locked" value in ebx */
movl 16(%esp), %ecx /* Place the address of the lock in ecx */

lock cmpxchg %ebx, (%ecx) /* Atomic compare-and-exchange: */
/* Compare %eax with memory (%ecx) */
/* if equal */
/* load %ebx in memory (%ecx) */
/* else */
/* load %ebx in %eax */

/* If eax is 1, the mutex was locked, so continue the spin loop */

cmp $1, %eax
je spinloop

/* We hold the lock now, so pop the saved registers and return */
popl %ecx
popl %ebx
popl %eax
ret

CS354 – module 4 13 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Spin Lock Code For X86 (Part 3)

/*--
* mutex_unlock (uint32 *lock) - release a lock
*--
*/

mutex_unlock:

/* Save register eax */
pushl %eax

/* Load the address of lock onto eax */
movl 8(%esp), %eax

/* Store the "unlocked" value in the lock, thereby unlocking it */
movl $0, (%eax)

/* Restore the saved register and return */
popl %eax
ret

CS354 – module 4 14 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Handling Mutual Exclusion With Semaphores

d A programmer must allocate a semaphore for each item to be protected

d The semaphore acts as a mutual exclusion semaphore, and is known colloquially as a
mutex semaphore

d All applications must be programmed to use the mutex semaphore before accessing the
shared item

d The operating system guarantees that only one process can access the shared item at a
given time

d The implementation avoids busy waiting

CS354 – module 4 15 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Definition Of Critical Section

d Each piece of shared data must be protected from concurrent access

d A programmer inserts mutex operations

– Before access to the shared item

– After access to the shared item

d The protected code is known as a critical section

d Mutex operations must be placed in each function that accesses the shared item

CS354 – module 4 16 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Mutual Exclusion Inside An Operating System

d Several possible approaches have been used

d Examples: allow only one process at a time to

– Run operating system code

– Run a given operating system function

– Access a given operating system component (a single component may comprise
multiple functions)

d Allowing more processes to execute concurrently increases performance

d The general principle is:

to maximize performance, choose the smallest possible
granularity for mutual exclusion

CS354 – module 4 17 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Low-Level Mutual Exclusion

d Mutual exclusion is needed in two places

– In application processes

– Inside the operating system

d On a single-processor system, mutual exclusion can be guaranteed provided that no
context switching occurs

d A context switch can only occur when

– A device interrupts

– A process calls resched

d Low-level mutual exclusion technique: turn off interrupts and avoid rescheduling

CS354 – module 4 18 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Interrupt Mask

d A hardware mechanism that controls interrupts

d Implemented by an internal machine register, and may be part of processor status word

d On some hardware, a zero value means interrupts can occur; on other hardware, a non-
zero value means interrupts can occur

d The OS can

– Examine the current interrupt mask (find out whether interrupts are enabled)

– Set the interrupt mask to prevent interrupts

– Clear the interrupt mask to allow interrupts

CS354 – module 4 19 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Masking Interrupts

d Important principle:

No operating system function should contain code to explicitly
enable interrupts.

d Technique used: a given function

– Saves the current interrupt status

– Disables interrupts

– Proceeds through a critical section

– Restores the interrupt status from the saved copy

d Key insight: save / restore allows nested calls

CS354 – module 4 20 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Why Interrupt Masking Is Insufficient

d It works! But...

d Stopping interrupts penalizes all processes when one process executes a critical section

– It stops all I / O activity (and some device interrupts must be serviced within a
specifies period)

– It restricts execution to one process for the entire system

d Disabling interrupts can interfere with the scheduling invariant and lead to a priority
inversion where a low-priority process prevents execution of a high-priority process for
which I /O has completed

d Disabling interrupts does not provide a policy that controls which process can access a
critical section at a given time

d When used, a programmer must minimize the amount of time interrupts remain disabled

CS354 – module 4 21 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

High-Level Mutual Exclusion

d The idea is to create an operating system facility with the following properties

– Permit applications to define multiple, independent critical sections

– Allow processes to compete for access to each critical section independent of other
critical sections

– Provide an access policy that specifies how waiting processes gain access

d Good news: a single mechanism, the counting semaphore, solves the problem

CS354 – module 4 22 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Counting Semaphore

d An operating system abstraction

d An instance can be created dynamically

d Each instance is given a unique name

– Typically an integer

– Known as a semaphore ID

d An instance consists of a 2-tuple (count, set)

– Count is an integer

– Set is a set of processes that are waiting on the semaphore

CS354 – module 4 23 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Operations On Semaphores

d Create a new semaphore

d Delete an existing semaphore

d Wait on an existing semaphore

– Decrements the count

– Adds the calling process to set of waiting processes if the resulting count is negative

d Signal an existing semaphore

– Increments the count

– Makes a process ready if any are waiting

CS354 – module 4 24 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semaphore Functions

semid = semcreate(initial_count) Creates a semaphore and returns an ID

semdelete(semid) Deletes the specified semaphore

wait(semid) Waits on the specified semaphore

signal(semid) signals the specified semaphore

CS354 – module 4 25 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Key Uses Of Counting Semaphores

d Semaphores have many potential uses

d However, using semaphores to solve complex coordination problems can be
intellectually challenging

d We will consider two straightforward ways to use semaphores

– Cooperative mutual exclusion

– Producer-consumer synchronization (direct synchronization)

CS354 – module 4 26 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Cooperative Mutual Exclusion With Semaphores

d A set of processes use a semaphore to guard a shared item

d Initialize: create a mutex semaphore

sid = semcreate(1);

d Use: bracket each critical section in the code with calls to wait and signal

wait(sid);

...critical section to use the shared item...

signal(sid);

d All processes must agree to use semaphores (hence the term cooperative)

d Only one process will access the critical section at any time (others will be blocked)

CS354 – module 4 27 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Potential Problem: Deadlock

d Consider two processes that use semaphores to protect two data items, x and y

d The two semaphores are created

semidx = semcreate(1); semidy = semcreate(1);

d Then the two processes take the following steps

/* Process 1 */
...

wait(semidx);
start to modify x
wait(semidy);
modify y
signal(semidy);
finish modifying x
signal(semidx);

/* Process 2 */
...

wait(semidy);
start to modify y
wait(semidx);
modify x
signal(semidx);
finish modifying y
signal(semidy);

deadlock! →

CS354 – module 4 28 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

When Using Semaphores For Mutual Exclusion

d Good news: counting semaphores work well when a set of processes needs exclusive
access to a single resource

d Bad news: using semaphores with multiple resources can be tricky

d To avoid trouble

– Limit mutual exclusion to a single resource at any time, when possible

– When processes must obtain exclusive access to multiple resources, insure that all
processes access and release the resources in the same order

CS354 – module 4 29 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Synchronization With Semaphores

d Two semaphores suffice to control processes accessing a shared buffer

d Initialize: create producer and consumer semaphores

psem = semcreate(buffer_size);

csem = semcreate(0);

d The producer algorithm

repeat forever {

generate an item to be added to the buffer;

wait(psem);

fill_next_buffer_slot;

signal(csem);

}

CS354 – module 4 30 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Producer-Consumer Synchronization With Semaphores
(continued)

d The consumer algorithm

repeat forever {

wait(csem);

extract_from_buffer_slot;

signal(psem);

handle the item;

}

CS354 – module 4 31 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Interpretation Of Producer-Consumer Semaphores

PRODUCER

next

psem

8

CONSUMER

next

csem

6

3 4 5 6 7 8

d csem counts the items currently in the buffer

d psem counts the unused slots in the buffer

CS354 – module 4 32 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Semaphore Invariant

d Establishes a relationship between the semaphore concept and its implementation

d Makes the code easy to create and understand

d Must be re-established after each semaphore operation

d Is surprisingly elegant:

A nonnegative semaphore count means
that the set of processes is empty. A
count of negative N means that the set
contains N waiting processes.

CS354 – module 4 33 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Counting Semaphores In Xinu

d Are stored in an array of semaphore entries

d Each entry

– Corresponds to one instance (one semaphore)

– Contains an integer count and pointer to a list of processes

d The ID of a semaphore is its index in the array

d The policy for management of waiting processes is FIFO

CS354 – module 4 34 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Process State Used With Semaphores

d When a process is waiting on a semaphore, the process is not

– Executing

– Ready

– Suspended

– Receiving

d Note: the suspended state is only used by suspend and resume

d Therefore a new state is needed

d We will use the WAITING state for a process blocked by a semaphore

CS354 – module 4 35 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

State Transitions With Waiting State

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

CS354 – module 4 36 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Semaphore Definitions

/* semaphore.h - isbadsem */

#ifndef NSEM
#define NSEM 120 /* Number of semaphores, if not defined */
#endif

/* Semaphore state definitions */

#define S_FREE 0 /* Semaphore table entry is available */
#define S_USED 1 /* Semaphore table entry is in use */

/* Semaphore table entry */
struct sentry {

byte sstate; /* Whether entry is S_FREE or S_USED */
int32 scount; /* Count for the semaphore */
qid16 squeue; /* Queue of processes that are waiting */

/* on the semaphore */
};

extern struct sentry semtab[];

#define isbadsem(s) ((int32)(s) < 0 || (s) >= NSEM)

CS354 – module 4 37 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Wait (Part 1)

/* wait.c - wait */

#include <xinu.h>

/*--
* wait - Cause current process to wait on a semaphore
*--
*/

syscall wait(
sid32 sem /* Semaphore on which to wait */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process’ table entry */
struct sentry *semptr; /* Ptr to sempahore table entry */

mask = disable();
if (isbadsem(sem)) {

restore(mask);
return SYSERR;

}

semptr = &semtab[sem];
if (semptr->sstate == S_FREE) {

restore(mask);
return SYSERR;

}

CS354 – module 4 38 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Wait (Part 2)

if (--(semptr->scount) < 0) { /* If caller must block */
prptr = &proctab[currpid];
prptr->prstate = PR_WAIT; /* Set state to waiting */
prptr->prsem = sem; /* Record semaphore ID */
enqueue(currpid,semptr->squeue);/* Enqueue on semaphore */
resched(); /* and reschedule */

}

restore(mask);
return OK;

}

d Moving a process to the waiting state only requires a few lines of code

– Set the state of the current process to PR_WAIT

– Record the ID of the semaphore on which the process is waiting in field prsem

– Call resched

CS354 – module 4 39 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Semaphore Queuing Policy

d Determines which process to select among those that are waiting

d Is only used when signal is called and processes are waiting

d Examples of possible policies

– First-Come-First-Served (FCFS or FIFO)

– Process priority

– Random

CS354 – module 4 40 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Consequences Of A Semaphore Queuing Policy

d The goal is “fairness”

d Which semaphore queuing policy implements the goal the best?

d In other words, how should we interpret fairness?

d The semaphore policy can interact with scheduling policy

– Should a low-priority process be allowed to access a resource if a high-priority
process is also waiting?

– Should a low-priority process be blocked forever if high-priority processes use a
resource?

CS354 – module 4 41 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Choosing A Semaphore Queueing Policy

d The choice is difficult

d There is no single best answer

– Fairness not easy to define

– Scheduling and coordination interact in subtle ways

– The choice may affect other OS policies

d The interactions of heuristic policies may produce unexpected results

CS354 – module 4 42 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Semaphore Queuing Policy In Xinu

d Xinu uses first-come-first-served

d The approach has several advantages

– Is straightforward to implement

– Is extremely efficient

– Works well for traditional uses of semaphores

– Guarantees all contending processes will obtain access

d The FIFO approach has an interesting disadvantage: a low-priority process can obtain
access to a resource while a high-priority process remains blocked

CS354 – module 4 43 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Xinu’s FIFO Semaphore Policy

d Recall: each semaphore has a list of processes

d For a FIFO policy, the list is treated as a queue

d When it needs to insert the current process on a list, wait enqueues the calling process
at the tail of the queue

d When it chooses a waiting process to run, signal selects the process at the head of the
queue

d The code for signal follows

CS354 – module 4 44 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Signal (Part 1)

/* signal.c - signal */

#include <xinu.h>

/*--
* signal - Signal a semaphore, releasing a process if one is waiting
*--
*/

syscall signal(
sid32 sem /* ID of semaphore to signal */

)
{

intmask mask; /* Saved interrupt mask */
struct sentry *semptr; /* Ptr to sempahore table entry */

mask = disable();
if (isbadsem(sem)) {

restore(mask);
return SYSERR;

}
semptr= &semtab[sem];
if (semptr->sstate == S_FREE) {

restore(mask);
return SYSERR;

}

CS354 – module 4 45 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Implementation Of Signal (Part 2)

if ((semptr->scount++) < 0) { /* Release a waiting process */
ready(dequeue(semptr->squeue));

}
restore(mask);
return OK;

}

d Notice how little code is required to signal a semaphore

CS354 – module 4 46 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Possible Semaphore Creation Strategies

d Static

– All semaphores are defined at compile time

– The approach is more efficient, but less powerful

d Dynamic

– Semaphores are created at runtime

– The approach is more flexible

d Xinu supports dynamic semaphore allocation, but to achieve efficiency preallocates a
fixed-size array of possible semaphores

CS354 – module 4 47 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semcreate (Part 1)

/* semcreate.c - semcreate, newsem */

#include <xinu.h>

local sid32 newsem(void);

/*--
* semcreate - Create a new semaphore and return the ID to the caller
*--
*/

sid32 semcreate(
int32 count /* Initial semaphore count */

)
{

intmask mask; /* Saved interrupt mask */
sid32 sem; /* Semaphore ID to return */

mask = disable();

if (count < 0 || ((sem=newsem())==SYSERR)) {
restore(mask);
return SYSERR;

}
semtab[sem].scount = count; /* Initialize table entry */

restore(mask);
return sem;

}

CS354 – module 4 48 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semcreate (Part 2)

/*--
* newsem - Allocate an unused semaphore and return its index
*--
*/

local sid32 newsem(void)
{

static sid32 nextsem = 0; /* Next semaphore index to try */
sid32 sem; /* Semaphore ID to return */
int32 i; /* Iterate through # entries */

for (i=0 ; i<NSEM ; i++) {
sem = nextsem++;
if (nextsem >= NSEM)

nextsem = 0;
if (semtab[sem].sstate == S_FREE) {

semtab[sem].sstate = S_USED;
return sem;

}
}
return SYSERR;

}

CS354 – module 4 49 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Semaphore Deletion

d Wrinkle: one or more processes may be waiting when a semaphore is deleted

d We must choose how to dispose of each waiting process

d The Xinu disposition policy: if a process is waiting on a semaphore when the
semaphore is deleted, the process becomes ready

CS354 – module 4 50 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semdelete (Part 1)

/* semdelete.c - semdelete */

#include <xinu.h>

/*--
* semdelete - Delete a semaphore by releasing its table entry
*--
*/

syscall semdelete(
sid32 sem /* ID of semaphore to delete */

)
{

intmask mask; /* Saved interrupt mask */
struct sentry *semptr; /* Ptr to semaphore table entry */

mask = disable();
if (isbadsem(sem)) {

restore(mask);
return SYSERR;

}

semptr = &semtab[sem];
if (semptr->sstate == S_FREE) {

restore(mask);
return SYSERR;

}
semptr->sstate = S_FREE;

CS354 – module 4 51 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Semdelete (Part 2)

resched_cntl(DEFER_START);
while (semptr->scount++ < 0) { /* Free all waiting processes */

ready(getfirst(semptr->squeue));
}
resched_cntl(DEFER_STOP);
restore(mask);
return OK;

}

d Deferred rescheduling allows all waiting processes to be made ready before any of them
to run

d Before it ends deferred rescheduling, semdelete ensures the semaphore data structure is
ready for other processes to use

CS354 – module 4 52 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Do you understand semaphores?

CS354 – module 4 53 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Semaphore Behavior (A True Story)

d A process creates a semaphore

mutex = semcreate(1);

d Three processes then execute the following code

process convoy(char_to_print)
do forever {

think (i.e., use CPU);
wait(mutex);
print(char_to_print);
signal(mutex);

}

d The three processes print characters A , B , and C , respectively

CS354 – module 4 54 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Convoy

d The initial output is

– 20 A’s, 20 B’s, 20 C’s, 20 A’s, etc.

d After tens of seconds, however, the output becomes
ABCABCABC...

d Facts

– Everything is correct

– No other processes are executing

– The output is nonblocking (i.e., it uses polled I / O)

CS354 – module 4 55 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Convoy
(continued)

d Questions

– How long is thinking time?

– Why does convoy start?

– Will output switch back given enough time?

– Did knowing the policies or the implementation of the scheduler and semaphore
mechanisms make the convoy behavior obvious?

CS354 – module 4 56 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d Process synchronization is used in two ways

– As a service supplied to applications

– As an internal facility used inside the OS itself

d Low-level mutual exclusion

– Masks hardware interrupts

– Avoids rescheduling

– Is insufficient for all coordination needs

CS354 – module 4 57 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d High-level process coordination is

– Used by subsets of processes

– Available inside and outside the OS

– Implemented with counting semaphore

d Counting semaphore

– A powerful abstraction implemented in software

– Provides mutual exclusion and producer / consumer synchronization

CS354 – module 4 58 Spring, 2024
Copyright 2024 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

