
Module IV

Process Management:
Coordination And Synchronization
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Location Of Process Coordination In The Hierarchy
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Coordination Of Processes

d Is necessary in a concurrent system

d Avoids conflicts when multiple processes access shared items

d Allows a set of processes to cooperate

d Can also be used when

– A process waits for I/O

– A process waits for another process

d An example of cooperation among processes: UNIX pipes
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Two Approaches To Process Coordination

d Use a hardware mechanism

– Most useful /important on multiprocessor hardware

– Often relies on busy waiting

d Use an operating system mechanism

– Works well with single processor hardware

– Does not entail unnecessary execution

Note: we will mention hardware quickly, and focus on operating system mechanisms
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Two Key Situations That Process
Coordination Mechanisms Handle

d Producer / consumer interaction

d Mutual exclusion
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Producer-Consumer Synchronization

d Typical scenario: a FIFO buffer shared by multiple processes

– Processes that deposit items into the buffer are called producers

– Processes that extract items from the buffer are called consumers

d The programmer must guarantee

– When the buffer is full, a producer will block until space is available

– When the buffer is empty, a consumer will block until an item has been deposited

d A given process may act as a consumer for one buffer and a producer for another

d Example: in Unix pipeline, a process may read input from one pipe and write output to
another

cat employees | grep Name: | sort
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Mutual Exclusion

d In a concurrent system, multiple processes may attempt to access shared data items

d If one process starts to change a data item and then a context switch allows another
process to run and access the data item, the results can be incorrect

d We use the term atomic to refer to an operation that is indivisible (i.e., the hardware
performs the operation in a single instruction that cannot be interrupted)

d Many data operations are non-atomic, which means a sequence of multiple operations
are used to change a data item

d Programmers must take steps to ensure that when one process executes a sequence of
operations to change a data item, no other process can attempt to make changes
concurrently
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Recall

d Even trivial changes to a shared variable (e.g., x++) can require a sequence of hardware
operations

d Anyone working with concurrent processes must guard every access to shared data
items
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To Prevent Problems

d A programmer must ensure that only one process accesses a shared item at any time

d General approach

– Once a process obtains access, make all other processes wait

– When a process finishes accessing the item, grant access to one of the waiting
processes

d Three techniques are available

– Hardware mechanisms that disable and restore interrupts

– Hardware spin lock instructions

– Semaphores (implemented in software)
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Handling Mutual Exclusion With Spin Locks

d Used in multicore CPUs; does not work for a single processor

d A special hardware operation allows a core to test and/or set a special lock atomically

d The lock may consist of special hardware or may be a location in memory

d The hardware guarantees that only one core will be allowed to set the lock at any time

d The mechanism is known as a spin lock because a core uses busy waiting to gain access

d Busy waiting literally means the core executes a loop that tests the spin lock repeatedly
until access is granted

d The approach was once known as test-and-set
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An Example Of A Spin Lock (x86)

d An instruction performs an atomic compare and exchange (cmpxchg)

d Spin loop: repeat the following

– Place an “unlocked” value (e.g., 0) in register eax

– Place a “locked” value (e.g., 1) in register ebx

– Place the address of a memory location to be used as a lock in register ecx

– Execute the cmpxchg instruction

– Register eax will contain the value of the lock before the compare and exchange
occurred

– Continue the spin loop as long as eax contains the “locked” value

d To release the lock, assign the “unlocked” value to the lock location in memory
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Example Spin Lock Code For X86 (Part 1)

/* mutex.S - mutex_lock, mutex_unlock */

.text

.globl mutex_lock

.globl mutex_unlock

/*------------------------------------------------------------------------
* mutex_lock(uint32 *lock) -- Acquire a lock
*------------------------------------------------------------------------
*/

mutex_lock:

/* Save registers that will be modified */

pushl %eax
pushl %ebx
pushl %ecx

CS354 – module 4 12 Spring, 2024
Copyright  2024 by Douglas Comer and CRC Press, Inc. All rights reserved.



Example Spin Lock Code For X86 (Part 2)

spinloop:
movl $0, %eax /* Place the "unlocked" value in eax */
movl $1, %ebx /* Place the "locked" value in ebx */
movl 16(%esp), %ecx /* Place the address of the lock in ecx */

lock cmpxchg %ebx, (%ecx) /* Atomic compare-and-exchange: */
/* Compare %eax with memory (%ecx) */
/* if equal */
/* load %ebx in memory (%ecx) */
/* else */
/* load %ebx in %eax */

/* If eax is 1, the mutex was locked, so continue the spin loop */

cmp $1, %eax
je spinloop

/* We hold the lock now, so pop the saved registers and return */
popl %ecx
popl %ebx
popl %eax
ret
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Example Spin Lock Code For X86 (Part 3)

/*------------------------------------------------------------------------
* mutex_unlock (uint32 *lock) - release a lock
*------------------------------------------------------------------------
*/

mutex_unlock:

/* Save register eax */
pushl %eax

/* Load the address of lock onto eax */
movl 8(%esp), %eax

/* Store the "unlocked" value in the lock, thereby unlocking it */
movl $0, (%eax)

/* Restore the saved register and return */
popl %eax
ret
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Handling Mutual Exclusion With Semaphores

d A programmer must allocate a semaphore for each item to be protected

d The semaphore acts as a mutual exclusion semaphore, and is known colloquially as a
mutex semaphore

d All applications must be programmed to use the mutex semaphore before accessing the
shared item

d The operating system guarantees that only one process can access the shared item at a
given time

d The implementation avoids busy waiting
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Definition Of Critical Section

d Each piece of shared data must be protected from concurrent access

d A programmer inserts mutex operations

– Before access to the shared item

– After access to the shared item

d The protected code is known as a critical section

d Mutex operations must be placed in each function that accesses the shared item
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Mutual Exclusion Inside An Operating System

d Several possible approaches have been used

d Examples: allow only one process at a time to

– Run operating system code

– Run a given operating system function

– Access a given operating system component (a single component may comprise
multiple functions)

d Allowing more processes to execute concurrently increases performance

d The general principle is:

to maximize performance, choose the smallest possible
granularity for mutual exclusion

CS354 – module 4 17 Spring, 2024
Copyright  2024 by Douglas Comer and CRC Press, Inc. All rights reserved.



Low-Level Mutual Exclusion

d Mutual exclusion is needed in two places

– In application processes

– Inside the operating system

d On a single-processor system, mutual exclusion can be guaranteed provided that no
context switching occurs

d A context switch can only occur when

– A device interrupts

– A process calls resched

d Low-level mutual exclusion technique: turn off interrupts and avoid rescheduling
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Interrupt Mask

d A hardware mechanism that controls interrupts

d Implemented by an internal machine register, and may be part of processor status word

d On some hardware, a zero value means interrupts can occur; on other hardware, a non-
zero value means interrupts can occur

d The OS can

– Examine the current interrupt mask (find out whether interrupts are enabled)

– Set the interrupt mask to prevent interrupts

– Clear the interrupt mask to allow interrupts

CS354 – module 4 19 Spring, 2024
Copyright  2024 by Douglas Comer and CRC Press, Inc. All rights reserved.



Masking Interrupts

d Important principle:

No operating system function should contain code to explicitly
enable interrupts.

d Technique used: a given function

– Saves the current interrupt status

– Disables interrupts

– Proceeds through a critical section

– Restores the interrupt status from the saved copy

d Key insight: save / restore allows nested calls
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Why Interrupt Masking Is Insufficient

d It works! But...

d Stopping interrupts penalizes all processes when one process executes a critical section

– It stops all I / O activity (and some device interrupts must be serviced within a
specifies period)

– It restricts execution to one process for the entire system

d Disabling interrupts can interfere with the scheduling invariant and lead to a priority
inversion where a low-priority process prevents execution of a high-priority process for
which I /O has completed

d Disabling interrupts does not provide a policy that controls which process can access a
critical section at a given time

d When used, a programmer must minimize the amount of time interrupts remain disabled
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High-Level Mutual Exclusion

d The idea is to create an operating system facility with the following properties

– Permit applications to define multiple, independent critical sections

– Allow processes to compete for access to each critical section independent of other
critical sections

– Provide an access policy that specifies how waiting processes gain access

d Good news: a single mechanism, the counting semaphore, solves the problem
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Counting Semaphore

d An operating system abstraction

d An instance can be created dynamically

d Each instance is given a unique name

– Typically an integer

– Known as a semaphore ID

d An instance consists of a 2-tuple (count, set)

– Count is an integer

– Set is a set of processes that are waiting on the semaphore
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Operations On Semaphores

d Create a new semaphore

d Delete an existing semaphore

d Wait on an existing semaphore

– Decrements the count

– Adds the calling process to set of waiting processes if the resulting count is negative

d Signal an existing semaphore

– Increments the count

– Makes a process ready if any are waiting
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Xinu Semaphore Functions

semid = semcreate(initial_count) Creates a semaphore and returns an ID

semdelete(semid) Deletes the specified semaphore

wait(semid) Waits on the specified semaphore

signal(semid) signals the specified semaphore
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Key Uses Of Counting Semaphores

d Semaphores have many potential uses

d However, using semaphores to solve complex coordination problems can be
intellectually challenging

d We will consider two straightforward ways to use semaphores

– Cooperative mutual exclusion

– Producer-consumer synchronization (direct synchronization)
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Cooperative Mutual Exclusion With Semaphores

d A set of processes use a semaphore to guard a shared item

d Initialize: create a mutex semaphore

sid = semcreate(1);

d Use: bracket each critical section in the code with calls to wait and signal

wait(sid);

...critical section to use the shared item...

signal(sid);

d All processes must agree to use semaphores (hence the term cooperative)

d Only one process will access the critical section at any time (others will be blocked)
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A Potential Problem: Deadlock

d Consider two processes that use semaphores to protect two data items, x and y

d The two semaphores are created

semidx = semcreate(1); semidy = semcreate(1);

d Then the two processes take the following steps

/* Process 1 */
...

wait(semidx);
start to modify x
wait(semidy);
modify y
signal(semidy);
finish modifying x
signal(semidx);

/* Process 2 */
...

wait(semidy);
start to modify y
wait(semidx);
modify x
signal(semidx);
finish modifying y
signal(semidy);

deadlock! →
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When Using Semaphores For Mutual Exclusion

d Good news: counting semaphores work well when a set of processes needs exclusive
access to a single resource

d Bad news: using semaphores with multiple resources can be tricky

d To avoid trouble

– Limit mutual exclusion to a single resource at any time, when possible

– When processes must obtain exclusive access to multiple resources, insure that all
processes access and release the resources in the same order
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Producer-Consumer Synchronization With Semaphores

d Two semaphores suffice to control processes accessing a shared buffer

d Initialize: create producer and consumer semaphores

psem = semcreate(buffer_size);

csem = semcreate(0);

d The producer algorithm

repeat forever {

generate an item to be added to the buffer;

wait(psem);

fill_next_buffer_slot;

signal(csem);

}
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Producer-Consumer Synchronization With Semaphores
(continued)

d The consumer algorithm

repeat forever {

wait(csem);

extract_from_buffer_slot;

signal(psem);

handle the item;

}
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An Interpretation Of Producer-Consumer Semaphores

PRODUCER

next

psem

8

CONSUMER

next

csem

6

3 4 5 6 7 8

d csem counts the items currently in the buffer

d psem counts the unused slots in the buffer
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The Semaphore Invariant

d Establishes a relationship between the semaphore concept and its implementation

d Makes the code easy to create and understand

d Must be re-established after each semaphore operation

d Is surprisingly elegant:

A nonnegative semaphore count means
that the set of processes is empty. A
count of negative N means that the set
contains N waiting processes.
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Counting Semaphores In Xinu

d Are stored in an array of semaphore entries

d Each entry

– Corresponds to one instance (one semaphore)

– Contains an integer count and pointer to a list of processes

d The ID of a semaphore is its index in the array

d The policy for management of waiting processes is FIFO
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A Process State Used With Semaphores

d When a process is waiting on a semaphore, the process is not

– Executing

– Ready

– Suspended

– Receiving

d Note: the suspended state is only used by suspend and resume

d Therefore a new state is needed

d We will use the WAITING state for a process blocked by a semaphore
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State Transitions With Waiting State

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend
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Semaphore Definitions

/* semaphore.h - isbadsem */

#ifndef NSEM
#define NSEM 120 /* Number of semaphores, if not defined */
#endif

/* Semaphore state definitions */

#define S_FREE 0 /* Semaphore table entry is available */
#define S_USED 1 /* Semaphore table entry is in use */

/* Semaphore table entry */
struct sentry {

byte sstate; /* Whether entry is S_FREE or S_USED */
int32 scount; /* Count for the semaphore */
qid16 squeue; /* Queue of processes that are waiting */

/* on the semaphore */
};

extern struct sentry semtab[];

#define isbadsem(s) ((int32)(s) < 0 || (s) >= NSEM)
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Implementation Of Wait (Part 1)

/* wait.c - wait */

#include <xinu.h>

/*------------------------------------------------------------------------
* wait - Cause current process to wait on a semaphore
*------------------------------------------------------------------------
*/

syscall wait(
sid32 sem /* Semaphore on which to wait */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process’ table entry */
struct sentry *semptr; /* Ptr to sempahore table entry */

mask = disable();
if (isbadsem(sem)) {

restore(mask);
return SYSERR;

}

semptr = &semtab[sem];
if (semptr->sstate == S_FREE) {

restore(mask);
return SYSERR;

}
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Implementation Of Wait (Part 2)

if (--(semptr->scount) < 0) { /* If caller must block */
prptr = &proctab[currpid];
prptr->prstate = PR_WAIT; /* Set state to waiting */
prptr->prsem = sem; /* Record semaphore ID */
enqueue(currpid,semptr->squeue);/* Enqueue on semaphore */
resched(); /* and reschedule */

}

restore(mask);
return OK;

}

d Moving a process to the waiting state only requires a few lines of code

– Set the state of the current process to PR_WAIT

– Record the ID of the semaphore on which the process is waiting in field prsem

– Call resched
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The Semaphore Queuing Policy

d Determines which process to select among those that are waiting

d Is only used when signal is called and processes are waiting

d Examples of possible policies

– First-Come-First-Served (FCFS or FIFO)

– Process priority

– Random

CS354 – module 4 40 Spring, 2024
Copyright  2024 by Douglas Comer and CRC Press, Inc. All rights reserved.



Consequences Of A Semaphore Queuing Policy

d The goal is “fairness”

d Which semaphore queuing policy implements the goal the best?

d In other words, how should we interpret fairness?

d The semaphore policy can interact with scheduling policy

– Should a low-priority process be allowed to access a resource if a high-priority
process is also waiting?

– Should a low-priority process be blocked forever if high-priority processes use a
resource?
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Choosing A Semaphore Queueing Policy

d The choice is difficult

d There is no single best answer

– Fairness not easy to define

– Scheduling and coordination interact in subtle ways

– The choice may affect other OS policies

d The interactions of heuristic policies may produce unexpected results

CS354 – module 4 42 Spring, 2024
Copyright  2024 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Semaphore Queuing Policy In Xinu

d Xinu uses first-come-first-served

d The approach has several advantages

– Is straightforward to implement

– Is extremely efficient

– Works well for traditional uses of semaphores

– Guarantees all contending processes will obtain access

d The FIFO approach has an interesting disadvantage: a low-priority process can obtain
access to a resource while a high-priority process remains blocked
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Implementation Of Xinu’s FIFO Semaphore Policy

d Recall: each semaphore has a list of processes

d For a FIFO policy, the list is treated as a queue

d When it needs to insert the current process on a list, wait enqueues the calling process
at the tail of the queue

d When it chooses a waiting process to run, signal selects the process at the head of the
queue

d The code for signal follows
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Implementation Of Signal (Part 1)

/* signal.c - signal */

#include <xinu.h>

/*------------------------------------------------------------------------
* signal - Signal a semaphore, releasing a process if one is waiting
*------------------------------------------------------------------------
*/

syscall signal(
sid32 sem /* ID of semaphore to signal */

)
{

intmask mask; /* Saved interrupt mask */
struct sentry *semptr; /* Ptr to sempahore table entry */

mask = disable();
if (isbadsem(sem)) {

restore(mask);
return SYSERR;

}
semptr= &semtab[sem];
if (semptr->sstate == S_FREE) {

restore(mask);
return SYSERR;

}
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Implementation Of Signal (Part 2)

if ((semptr->scount++) < 0) { /* Release a waiting process */
ready(dequeue(semptr->squeue));

}
restore(mask);
return OK;

}

d Notice how little code is required to signal a semaphore
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Possible Semaphore Creation Strategies

d Static

– All semaphores are defined at compile time

– The approach is more efficient, but less powerful

d Dynamic

– Semaphores are created at runtime

– The approach is more flexible

d Xinu supports dynamic semaphore allocation, but to achieve efficiency preallocates a
fixed-size array of possible semaphores
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Xinu Semcreate (Part 1)

/* semcreate.c - semcreate, newsem */

#include <xinu.h>

local sid32 newsem(void);

/*------------------------------------------------------------------------
* semcreate - Create a new semaphore and return the ID to the caller
*------------------------------------------------------------------------
*/

sid32 semcreate(
int32 count /* Initial semaphore count */

)
{

intmask mask; /* Saved interrupt mask */
sid32 sem; /* Semaphore ID to return */

mask = disable();

if (count < 0 || ((sem=newsem())==SYSERR)) {
restore(mask);
return SYSERR;

}
semtab[sem].scount = count; /* Initialize table entry */

restore(mask);
return sem;

}
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Xinu Semcreate (Part 2)

/*------------------------------------------------------------------------
* newsem - Allocate an unused semaphore and return its index
*------------------------------------------------------------------------
*/

local sid32 newsem(void)
{

static sid32 nextsem = 0; /* Next semaphore index to try */
sid32 sem; /* Semaphore ID to return */
int32 i; /* Iterate through # entries */

for (i=0 ; i<NSEM ; i++) {
sem = nextsem++;
if (nextsem >= NSEM)

nextsem = 0;
if (semtab[sem].sstate == S_FREE) {

semtab[sem].sstate = S_USED;
return sem;

}
}
return SYSERR;

}
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Semaphore Deletion

d Wrinkle: one or more processes may be waiting when a semaphore is deleted

d We must choose how to dispose of each waiting process

d The Xinu disposition policy: if a process is waiting on a semaphore when the
semaphore is deleted, the process becomes ready
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Xinu Semdelete (Part 1)

/* semdelete.c - semdelete */

#include <xinu.h>

/*------------------------------------------------------------------------
* semdelete - Delete a semaphore by releasing its table entry
*------------------------------------------------------------------------
*/

syscall semdelete(
sid32 sem /* ID of semaphore to delete */

)
{

intmask mask; /* Saved interrupt mask */
struct sentry *semptr; /* Ptr to semaphore table entry */

mask = disable();
if (isbadsem(sem)) {

restore(mask);
return SYSERR;

}

semptr = &semtab[sem];
if (semptr->sstate == S_FREE) {

restore(mask);
return SYSERR;

}
semptr->sstate = S_FREE;
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Xinu Semdelete (Part 2)

resched_cntl(DEFER_START);
while (semptr->scount++ < 0) { /* Free all waiting processes */

ready(getfirst(semptr->squeue));
}
resched_cntl(DEFER_STOP);
restore(mask);
return OK;

}

d Deferred rescheduling allows all waiting processes to be made ready before any of them
to run

d Before it ends deferred rescheduling, semdelete ensures the semaphore data structure is
ready for other processes to use
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Do you understand semaphores?
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Semaphore Behavior (A True Story)

d A process creates a semaphore

mutex = semcreate(1);

d Three processes then execute the following code

process convoy(char_to_print)
do forever {

think (i.e., use CPU);
wait(mutex);
print(char_to_print);
signal(mutex);

}

d The three processes print characters A , B , and C , respectively
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The Convoy

d The initial output is

– 20 A’s, 20 B’s, 20 C’s, 20 A’s, etc.

d After tens of seconds, however, the output becomes
ABCABCABC...

d Facts

– Everything is correct

– No other processes are executing

– The output is nonblocking (i.e., it uses polled I / O)
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The Convoy
(continued)

d Questions

– How long is thinking time?

– Why does convoy start?

– Will output switch back given enough time?

– Did knowing the policies or the implementation of the scheduler and semaphore
mechanisms make the convoy behavior obvious?
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Summary

d Process synchronization is used in two ways

– As a service supplied to applications

– As an internal facility used inside the OS itself

d Low-level mutual exclusion

– Masks hardware interrupts

– Avoids rescheduling

– Is insufficient for all coordination needs
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Summary
(continued)

d High-level process coordination is

– Used by subsets of processes

– Available inside and outside the OS

– Implemented with counting semaphore

d Counting semaphore

– A powerful abstraction implemented in software

– Provides mutual exclusion and producer / consumer synchronization
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Questions?


