Assignment 6 Forensics

Computer Forensics (Motivation)

- search for evidence of computer activities in support of an investigation
- computing activity (criminal or otherwise) leaves lasting evidence
- users may hide, destroy, or protect this evidence
- forensic analysts discover and collect evidence, avoiding defense mechanisms and accidental data loss
- For this assignment, we will be simulating this analysis by providing you with a "seized" virtual image of a suspect's computer; you must carefully interact with it to find and report evidence related to a fictional murder case.

Computer Forensics (Your Tasks)

- load a suspect virtual appliance to your environment
- analyze it using the tools, techniques, and concepts we present here
- discover "tokens" hidden in digital evidence
- submit the tokens alongside an explanation of how you found them and a directory containing the files in which you found them

Disclaimers

Everything for this assignment should be done on your local/virtual machine.

Do not access any machines or images without express permission (certain privacy laws protect people against unauthorized access to computers/devices).

Do not perform any network or remote analysis; it is out of scope and unnecessary for this assignment.

Assignment Submission

At Least 1 out of 4 Password

- passwords used for encryption or login
- all passwords are exactly one word from the top 100k English words

6 of 9 Total Two-Word Tokens

- tokens are two English words separated by a single character
- check places like the end of text files, file names, interesting strings

3 of 4 Total Three-Word Tokens

- three English words with a single character between each
- 2 of 4 Total Four-Word Tokens or Transaction Identifier (Limit 1)
 - four English words with a single character between each
 - one of your submitted tokens may be a relevant transaction identifier

Dead and Live Analysis

Dead Analysis

- Investigator examines device resources without running it
- User account password is not required for analysis
- Can avoid suspect counter-measures
- Does not alter evidence state when done correctly

Live Analysis

- Investigator examines running device/image
- User account password will be required to log in
- Can see the environment as the suspect used it.
- Almost always risks loss of evidence.

Dead and Live Analysis (trite examples)

Dead Analysis

- Remove hardware and insert into another machine
- Specialized measurement tools for hardware resources
- Read raw bytes from memory and storage devices
- <u>Mount partitions to another</u> (potentially virtual) machine

Live Analysis

- Boot and interact with a suspect's device
- Gain remote access to a running suspect device
- Install specialized software to extract information
- Run a copied image of a real machine in a virtual machine

A note on Virtual Traps

Imagine you are protecting incriminating evidence on your machine. What might you do to help prevent others from accessing it?

- Encryption
- Dead-man switch
- Destruction on incorrect passwords
- Hidden or disguised files
- Corrupt your own tools
- Create false interfaces to mislead investigators

Partitions

Partitions separate a physical storage medium into logically isolated sections

- Each partition has a different file system
- Some partitions can be "bootable" defining how to boot an operating system
- Partitions can be mounted to a running file system (see install instructions)
- Individual partitions can be encrypted to protect the data stored there

Linux Unified Key Setup (LUKS) - Disk Encryption

- <u>Cryptographically secure method</u> of encrypting entire partitions of data
- Must provide passphrase/key to allow OS to decrypt data read from disk
- Protects data regardless of OS/filesystem
- Vulnerable only with weak passwords (e.g., bruteforce/dictionary attacks)*
- PBKDF can mitigate weak password vulnerabilities

Password-based Key Derivation Functions

- Derive a key from a password or passphrase using a PRF
- Repeatedly (*n* iterations) chain PRF outputs together starting with the password/passphrase to generate the key
- Use the key to perform encryption (e.g. using AES)

Unix File System

General locations:

Location	Description
1	Root directory
/dev	Attached devices and pseudo-devices
/home/mona	Mona's home directory
/mnt, /media	For mounting, managing, attaching removable devices, filesystems etc
/var/log	System, process log files
/tmp	Temporary files
/etc	Contains system-wide configuration files

Unix File System

`Is -I` without the -a flag [hidden files and folders not shown]

total 0								
drwx0	3	aruneshmathur	staff	96B	Nov	11	16:13	Applications/
drwx+	15	aruneshmathur	staff	480B	Nov	29	11:03	Desktop/
drwx+	15	aruneshmathur	staff	480B	Nov	10	15:54	Documents/
drwx+	7	aruneshmathur	staff	224B	Nov	29	12:20	Downloads/
drwx0	66	aruneshmathur	staff	2.1K	Nov	20	13:20	Library/
drwx+	3	aruneshmathur	staff	96B	Sep	8	2017	Movies/
drwx+	4	aruneshmathur	staff	128B	Sep	15	2017	Music/
drwx+	3	aruneshmathur	staff	96B	Sep	8	2017	Pictures/
drwxr-xr-x+	5	aruneshmathur	staff	160B	Sep	8	2017	Public/
drwx	5	aruneshmathur	staff	160B	Nov	20	13:58	VirtualBox VMs/
drwxr-xr-x@	18	aruneshmathur	staff	576B	Nov	14	11:04	Website/
drwxr-xr-x	3	aruneshmathur	staff	96B	Oct	13	2017	nltk_data/

Unix File System

`Is -la` with the -a flag [hidden files and folders shown]

total 136								
drwx+	3	aruneshmathur	staff	96B	Sep	8	2017	Pictures/
drwx+	3	aruneshmathur	staff	96B	Sep	8	2017	Movies/
drwxr-xr-x+	5	aruneshmathur	staff	160B	Sep	8	2017	Public/
-r	1	aruneshmathur	staff	7B	Sep	8	2017	.CFUserTextEncoding
drwx+	4	aruneshmathur	staff	128B	Sep	15	2017	Music/
drwxr-xr-x	5	aruneshmathur	staff	160B	Oct	13	2017	.ipython/
drwxr-xr-x	3	aruneshmathur	staff	96B	Oct	13	2017	nltk_data/
drwxr-xr-x	3	aruneshmathur	staff	96B	Oct	14	2017	.jupyter/
-rw-rr-0	1	aruneshmathur	staff	243B	Oct	1	17:08	.gitconfig
drwxr-xr-x	5	root	admin	160B	Nov	8	22:52	· · / .
drwx+	15	aruneshmathur	staff	480B	Nov	10	15:54	Documents/
drwxr-xr-x	6	aruneshmathur	staff	192B	Nov	10	16:25	.subversion/
-rw-rr	1	aruneshmathur	staff	0B	Nov	10	16:26	.Rhistory
drwxr-xr-x	15	aruneshmathur	staff	480B	Nov	10	20:28	.atom/
drwx0	3	aruneshmathur	staff	96B	Nov	11	16:13	Applications/
drwxr-xr-x@	18	aruneshmathur	staff	576B	Nov	14	11:04	Website/
drwx0	5	aruneshmathur	staff	160B	Nov	14	20:24	.ssh/
drwxr-xr-x	5	aruneshmathur	staff	160B	Nov	15	21:57	.matplotlib/
-rw-rr	1	aruneshmathur	staff	199B	Nov	18	13:01	<pre>.bash_profile</pre>
drwx0	66	aruneshmathur	staff	2.1K	Nov	20	13:20	Library/
drwx	5	aruneshmathur	staff	160B	Nov	20	13:58	VirtualBox VMs/
-rw	1	aruneshmathur	staff	6.7K	Nov	20	22:44	.sqlite_history
-rw-rr-0	1	aruneshmathur	staff	14K	Nov	26	17:06	.DS_Store
drwxr-xr-x	21	aruneshmathur	staff	672B	Nov	28	11:33	.rstudio-desktop/
drwx+	15	aruneshmathur	staff	480B	Nov	29	11:03	Desktop/
drwx	2	aruneshmathur	staff	64B	Nov	29	11:51	.Trash/
drwx+	7	aruneshmathur	staff	224B	Nov	29	12:20	Downloads/
-rw	1	aruneshmathur	staff	21K	Nov	29	15:20	.viminfo
drwxr-xr-x+	31	aruneshmathur	staff	992B	Nov	29	15:20	./
-rw	1	aruneshmathur	staff	6.1K	Nov	29	22:59	.bash_history
drwx	110	aruneshmathur	staff	3.4K	Nov	29	23:00	.bash_sessions/

GNU Grub

Bootloader program used by most Linux operating systems

Presents a list of the operating systems available on disk

dvance emory emory	ed optic test (n test (n	ns for Ubu memtest86+) memtest86+,	ntu serial conso	ole 115200)		

Access by hitting

'Esc' during boot

GNU Grub

/etc/rc.local is a script that is run when the operating system first loads

- Can be used to start custom and startup services services etc.
- Often used by system administrators to perform maintenance tasks

Linux User Account Passwords

Background: Linux Accounts and Access Control

Account Security is enforced by the operating system

- The OS keeps state of which user owns a process
- It denies access (read/write/execute) based on the user and file permissions
- If the OS isn't running (dead analysis), it can't check permissions

Passwords are stored as hashes in a <u>permissions-protected /etc/shadow</u>

- Changing a password requires only changing this file
- You need to know the root password to change this file, since it is readable/writable only by the root account, or do you...

Communication Traces

Look for traces of various digital communication:

- Internet Relay Chat (IRC)
- Local and web-based email clients
- Browser-stored passwords
- Sites with <u>lingering sessions</u> or "stay signed in" features
- General system log files to see what applications are used for communication

PGP/GPG

"Pretty Good Privacy" / "GNU Privacy Guard"

- Very similar implementation (GPG <= open source re-implementation of PGP)
- Uses RSA techniques to provide asymmetric encryption for end users
- All of the RSA features still apply to a user's GPG private key and public key
 - Public key can be used to encrypt files, archives, strings, etc. such that only the private key can decrypt the output
 - Private key can be used to sign arbitrary strings or files such that a public key can verify that the signature was generated by the corresponding private key
- Ubuntu ships with a <u>GPG binary</u> that can perform all the operations necessary for asymmetric encryption (e.g., generate/import keys, sign, encrypt, verify, decrypt)

Bitcoin tools

Wallet Key Pair (not a PGP/GPG key pair)

- Bitcoin wallets use asymmetric encryption where each address has a key pair
- Bitcoin key pairs can perform normal <u>encryption/signature operations</u>
- The Bitcoin specification defines how to derive addresses from the keys
- Given the address, anyone can search the blockchain for it

Wallet Software

- Existing tools can perform all the arithmetic associated with key derivation
- Resources like <u>Blockchain Explorer</u> allow basic analysis of the blockchain

Questions?

the slides after this point have nothing to do with the assignment

other common types of CTF "puzzles"

->

->

- "pwn"
- web exploitation ->
- reversing binaries
- cryptography ->

- learn how server works to break it
- learn how website works to break it
- learn how program works to break it
- math, probably

• lots of others!

Beginner ctfs & learning resources

- general/pwn: <u>https://overthewire.org/wargames/bandit/</u>
- web: <u>https://overthewire.org/wargames/natas/</u> (a bit outdated but still good)
- reversing: <u>https://ropemporium.com/</u> <u>https://crackmes.one</u>
- cryptography: <u>https://cryptopals.com/</u>

- picoCTF: <u>https://picoctf.com/</u>
- Google Beginner's Quest:

https://capturetheflag.withgoogle.com/beginners-quest