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BN Outline

e Qverfit
* Cross validation
* Regularization
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- Train/Test Splits

* By definition, trained models are minimizing
their objective for the data they see, but not
for the data they don’t see

* What we really care about is how the model
generalizes to data we have not observed yet

* One common approach is to split our training
data into disjoin sets—a train set and a test
set—and assess performance on test given
parameters set using train.
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o Train/Test Splits
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_ain/Test Splits

Model that minimizes
training error (i.e., MSE = 6)
aka Empirical Risk Minimizer
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_ain/Test Splits

Test error could be higher (i.e., MSE = 6)
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- Generalization guarantees

* Generalization error:
E¢ = |Etrain — Etest|

 Statistical learning theory provides the tools to

characterize the distribution of E
P(E;>€e)<é

* The distribution we can claim depends on
parameters which capture the complexity of
the class of models we are considering

4/11/22 CS1951A - Data Science - Spring'22 - Lotrenzo De Stefani



- Generalization guarantees

* These bounds are often rather pessimistic
when compared with actual performance of

ML algorithms

— They state a much higher requirement for number
of observations

— They state much weaker guarantees than those
observed

 Still, very important tool! We want to
guarantee that something is going to work!
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The more complex the possible models, the more likely we are to
observe a large discrepancy between Ep and Er

* The more complex the model, the more we tend to overfit to
the training data

In other words, we need more training samples to “learn well”
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_ Cross Validation

* Some train/test splits are worse than others

4/11/22

— Particularly unbalanced sets

* To get a more stable estimate of test performance,
we can use cross validation

1.

Divide the data randomly in k distinct subsets of the
same size (folds)

In k-1 rounds select k-1 folds as the training set and the
remaining one as the test set

Compute the average generalization error
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_ Cross Validation

* Some train/test splits are worse than others

— Particularly unbalanced sets

* To get a more stable estimate of test
performance, we can use cross validation

accs = |[]
for 1 1n range(num folds):
train, test = random.split (data)

clf.fit (train)
accs.append(clf.score(test))
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-omplexity vs generalizability tradeoff
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The more complex the model, the more expressive
— Captures more details about the model

The more complex the model, the harder it is to
“learn it”

— The more examples we need to see

— The more information we need to acquire

While using complex models may seem appealing,
we incur in the risk of overfitting to the data

— We need to observe a high number of examples to
have the same guarantees as if we had simpler models
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- Regularization

* Modify the cost function to add a cost for increasing the

complexity of the model
* E.g., Inlinear regression incur a cost for having more features
(more non-zero weights), or for assuming features are very
important (more high weights)
e Or “early stopping” —for iterative training procedures (e.g.,
gradient descent) stop before the model has fully converged
* We assume the final steps are spent memorizing noise

* By definition, regularization will make your model worse
during training...

* But hopefully better at test time...

* Which is what you really care about!
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ming (loss(z; 0) + Acost(0))

* Adds an extra “hyperparameter” which
controls how much you penalize for the
complexity of the model
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Given a vector X = (xq, %5, ...)

* [ norm ;= Zx? #non-zero coefficients

l
* lynorm: I =) |z encourages sparsity

* lnorm: b= [» z?  more stable
* L, norm: I, = g/zxf
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-arization examples for linear regression

* Linear Regression — No regularization
- A
ming, (Y — w - £)%)

* Lasso Regression — Linear regression with [; penalty on the
vector of coefficients

ming, ((§ — @ - )% + A1 (w))

* Ridge Regression— Linear regression with [, penalty on the
loss

miny, ((§ — w - )% + Ma(w))

* Logistic Regression usually uses [, or [ regularization by
default (e.g. in sklearn)
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- Dev/Validation Sets
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Often you need to make meta-decisions, not just set the
parameters

— Which model is better (i.e. generalizes better to held out
data)?

— Which regularization to use?
— How many training iterations?

Do do this, you have to split data into training
/developement/test

If you use test data to set these hyper-parameters, you are
“peaking” at unseen data in order to fit the model, and thus
test performance is no longer actually representative of how
you would do in the real world
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Feature Selection

e Explicitly remove features from model before training

* Lots of heuristic techniques (no magic solutions, requires trial and
error)

* Some techniques:
— Remove correlated features
— Remove low-variance features
— lteratively add features with highest weight or information gain
— |teratively remove features with lowest weight or information gain

— Dimensionality Reduction (e.g. SVD, PCA)



