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Outline

• Overfit
• Cross validation
• Regularization
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Train/Test Splits

• By definition, trained models are minimizing 
their objective for the data they see, but not 
for the data they don’t see

• What we really care about is how the model
generalizes to data we have not observed yet

• One common approach is to split our training 
data into disjoin sets—a train set and a test 
set—and assess performance on test given 
parameters set using train.
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Train/Test Splits
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Train/Test Splits

Train Test

Best 
possible 
model
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Train/Test Splits
Model that minimizes 
training error (i.e., MSE = 6) 
aka Empirical Risk Minimizer
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Train/Test Splits

Test error could be higher (i.e., MSE = 6) 

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 6



Generalization guarantees

• Generalization error:
𝐸! = |𝐸"#$%& − 𝐸"'("|

• Statistical learning theory provides the tools to 
characterize the distribution of 𝐸!

𝑃 𝐸! > 𝜖 < 𝛿
• The distribution we can claim depends on 

parameters which capture the complexity of 
the class of models we are considering
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Generalization guarantees

• These bounds are often rather pessimistic 
when compared with actual performance of 
ML algorithms
– They state a much higher requirement for number 

of observations
– They state much weaker guarantees than those 

observed
• Still, very important tool! We want to 

guarantee that something is going to work!
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Complexity and overfitting

The more complex the possible models, the more likely we are to 
observe a large discrepancy between 𝐸! and 𝐸"
• The more complex the model, the more we tend to overfit to 

the training data
• In other words, we need more training samples to “learn well”
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Cross Validation

• Some train/test splits are worse than others
– Particularly unbalanced sets

• To get a more stable estimate of test performance, 
we can use cross validation
1. Divide the data randomly in k distinct subsets of the 

same size (folds)
2. In k-1 rounds select k-1 folds as the training set and the 

remaining one as the test set
3. Compute the average generalization error 
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Cross Validation

accs = []
for i in range(num_folds):

train, test = random.split(data)
clf.fit(train)
accs.append(clf.score(test))

• Some train/test splits are worse than others
– Particularly unbalanced sets

• To get a more stable estimate of test 
performance, we can use cross validation
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The complexity vs generalizability tradeoff

• The more complex the model, the more expressive
– Captures more details about the model

• The more complex the model, the harder it is to 
“learn it”
– The more examples we need to see
– The more information we need to acquire

• While using complex models may seem appealing, 
we incur in the risk of overfitting to the data
– We need to observe a high number of examples to 

have the same guarantees as if we had simpler models
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Regularization

• Modify the cost function to add a cost for increasing the 
complexity of the model
• E.g.,  In linear regression  incur a cost for having more features 

(more non-zero weights), or for assuming features are very 
important (more high weights)

• Or “early stopping”—for iterative training procedures (e.g., 
gradient descent) stop before the model has fully converged 
• We assume the final steps are spent memorizing noise

• By definition, regularization will make your model worse 
during training…

• But hopefully better at test time…
• Which is what you really care about!
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Regularization

• Adds an extra “hyperparameter” which 
controls how much you penalize for the 
complexity of the model
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Norms

Given a vector �⃗� = (𝑥), 𝑥*, … )

• 𝑙+ norm                                #non-zero coefficients

• 𝑙) norm: encourages sparsity

• 𝑙* norm:                               more stable 

• 𝑙, norm:

𝑙# =$
$

𝑥$#
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• Linear Regression — No regularization

• Lasso Regression — Linear regression with 𝑙% penalty on the 
vector of coefficients

• Ridge Regression— Linear regression with 𝑙& penalty on the 
loss

• Logistic Regression usually uses 𝑙% or 𝑙% regularization by 
default (e.g. in sklearn)

Regularization examples for linear regression

⃗ ⃗ ⃗

⃗ ⃗ ⃗ ⃗

⃗ ⃗ ⃗ ⃗
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Dev/Validation Sets

• Often you need to make meta-decisions, not just set the 
parameters 

– Which model is better (i.e. generalizes better to held out 
data)?

– Which regularization to use?

– How many training iterations?

• Do do this, you have to split data into training 
/developement/test

• If you use test data to set these hyper-parameters, you are 
“peaking” at unseen data in order to fit the model, and thus 
test performance is no longer actually representative of how 
you would do in the real world
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Feature Selection

• Explicitly remove features from model before training

• Lots of heuristic techniques (no magic solutions, requires trial and 
error)

• Some techniques:

– Remove correlated features 

– Remove low-variance features

– Iteratively add features with highest weight or information gain

– Iteratively remove features with lowest weight or information gain

– Dimensionality Reduction (e.g. SVD, PCA)
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