
CS1951A: Data Science

Lorenzo De Stefani
Spring 2022

Lecture 17: Cross validation, Regularization
and Feature Selection

Outline

• Overfit
• Cross validation
• Regularization

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 1

Train/Test Splits

• By definition, trained models are minimizing
their objective for the data they see, but not
for the data they don’t see

• What we really care about is how the model
generalizes to data we have not observed yet

• One common approach is to split our training
data into disjoin sets—a train set and a test
set—and assess performance on test given
parameters set using train.

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 2

Train/Test Splits

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 3

Train/Test Splits

Train Test

Best
possible
model

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 4

Train/Test Splits
Model that minimizes
training error (i.e., MSE = 6)
aka Empirical Risk Minimizer

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 5

Train/Test Splits

Test error could be higher (i.e., MSE = 6)

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 6

Generalization guarantees

• Generalization error:
𝐸! = |𝐸"#$%& − 𝐸"'("|

• Statistical learning theory provides the tools to
characterize the distribution of 𝐸!

𝑃 𝐸! > 𝜖 < 𝛿
• The distribution we can claim depends on

parameters which capture the complexity of
the class of models we are considering

74/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

Generalization guarantees

• These bounds are often rather pessimistic
when compared with actual performance of
ML algorithms
– They state a much higher requirement for number

of observations
– They state much weaker guarantees than those

observed
• Still, very important tool! We want to

guarantee that something is going to work!

84/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

Complexity and overfitting

The more complex the possible models, the more likely we are to
observe a large discrepancy between 𝐸! and 𝐸"
• The more complex the model, the more we tend to overfit to

the training data
• In other words, we need more training samples to “learn well”

94/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

Cross Validation

• Some train/test splits are worse than others
– Particularly unbalanced sets

• To get a more stable estimate of test performance,
we can use cross validation
1. Divide the data randomly in k distinct subsets of the

same size (folds)
2. In k-1 rounds select k-1 folds as the training set and the

remaining one as the test set
3. Compute the average generalization error

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 10

Cross Validation

accs = []
for i in range(num_folds):

train, test = random.split(data)
clf.fit(train)
accs.append(clf.score(test))

• Some train/test splits are worse than others
– Particularly unbalanced sets

• To get a more stable estimate of test
performance, we can use cross validation

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 11

The complexity vs generalizability tradeoff

• The more complex the model, the more expressive
– Captures more details about the model

• The more complex the model, the harder it is to
“learn it”
– The more examples we need to see
– The more information we need to acquire

• While using complex models may seem appealing,
we incur in the risk of overfitting to the data
– We need to observe a high number of examples to

have the same guarantees as if we had simpler models

124/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

Regularization

• Modify the cost function to add a cost for increasing the
complexity of the model
• E.g., In linear regression incur a cost for having more features

(more non-zero weights), or for assuming features are very
important (more high weights)

• Or “early stopping”—for iterative training procedures (e.g.,
gradient descent) stop before the model has fully converged
• We assume the final steps are spent memorizing noise

• By definition, regularization will make your model worse
during training…

• But hopefully better at test time…
• Which is what you really care about!

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 13

Regularization

• Adds an extra “hyperparameter” which
controls how much you penalize for the
complexity of the model

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 14

Norms

Given a vector �⃗� = (𝑥), 𝑥*, …)

• 𝑙+ norm #non-zero coefficients

• 𝑙) norm: encourages sparsity

• 𝑙* norm: more stable

• 𝑙, norm:

𝑙# =$
$

𝑥$#

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 15

• Linear Regression — No regularization

• Lasso Regression — Linear regression with 𝑙% penalty on the
vector of coefficients

• Ridge Regression— Linear regression with 𝑙& penalty on the
loss

• Logistic Regression usually uses 𝑙% or 𝑙% regularization by
default (e.g. in sklearn)

Regularization examples for linear regression

⃗ ⃗ ⃗

⃗ ⃗ ⃗ ⃗

⃗ ⃗ ⃗ ⃗

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 16

Dev/Validation Sets

• Often you need to make meta-decisions, not just set the
parameters

– Which model is better (i.e. generalizes better to held out
data)?

– Which regularization to use?

– How many training iterations?

• Do do this, you have to split data into training
/developement/test

• If you use test data to set these hyper-parameters, you are
“peaking” at unseen data in order to fit the model, and thus
test performance is no longer actually representative of how
you would do in the real world

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 17

Feature Selection

• Explicitly remove features from model before training

• Lots of heuristic techniques (no magic solutions, requires trial and
error)

• Some techniques:

– Remove correlated features

– Remove low-variance features

– Iteratively add features with highest weight or information gain

– Iteratively remove features with lowest weight or information gain

– Dimensionality Reduction (e.g. SVD, PCA)

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 18

