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Classification



Today

• Supervised learning: classification and 
regression

• k Nearest Neighbors
• Generative vs. Discriminative Models
• Naïve Bayes
• Linear regression with gradient descent
• Logistic Regression
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Supervised vs. Unsupervised Learning

• Supervised: Explicit data labels

– Sentiment analysis—review text -> star ratings

– Image tagging—image -> caption

• Unsupervised: No explicit labels

– Clustering—find groups similar customers

– Dimensionality Reduction—find features that 
differentiate individuals
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Classification and        Regression
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The predictor partitions the points in classes
• Assigns a “label” associate with the class

• Discrete output
• Binary classification with two classes

• E.g., “clicked, not clicked”
𝑓(𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑙𝑒𝑣𝑒𝑙) = {𝑐𝑙𝑖𝑐𝑘𝑒𝑑, 𝑛𝑜𝑡 𝑐𝑙𝑖𝑐𝑘𝑒𝑑}
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The predictor provides an estimate of the 
value of interest

• Returns real values 
• 𝑐𝑙𝑖𝑐𝑘𝑠 = 𝑚(𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑙𝑒𝑣𝑒𝑙) + 𝑏
• 𝑚 and 𝑏 are the parameters of the 

model to be estimated
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Classification: a probabilistic interpretation

4

We want to learn a predictor for the label Y based 
on observations of observed values X:
• We can study the distribution of the labels 

given the values X

• P(email is spam | words in the message)
• P(genre of song|tempo, harmony, lyrics…)
• P(article clicked | title, font, photo…)

P(Y|X)

Label Features
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K Nearest Neighbors
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Blue or Green?
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K Nearest Neighbors - Classification

8

K = 1

• Look at the k-nearest 
neighbors and take the 
majority vote

• Assign to the new point the 
majority label
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K Nearest Neighbors
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K = 5
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• K is the parameter that denotes the 
complexity of the model

• The higher K the more complex 
assignments we can realize

• How do we decide which are the 
nearest points/neighbors?
• Use a measure (e.g., Euclidian 

Distance)
• If multiple features, normalize 

the values and/or use 
opportune weights
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K Nearest Neighbors - Regression
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• KNN can also be used for 
regression

• The prediction of the value is based 
on the the values of neighboring 
points

What is its harmonic complexity?
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K Nearest Neighbors - Regression
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• Example: I want to estimate 
harmonic complexity (Y) given 
tempo (X)

• I select the K neighbors whose 
tempo (X) values are the nearest to 
that of the point being considered

• The predicted value is is obtained 
by averaging the values of the Y 
values of the neighbors

What is its harmonic complexity?

K = 5
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• Arguably the simplest ML algorithm
• “Non-Parametric” — no assumptions about 

the form of the classification model
• No explicit training phase:
– All the work is done at prediction time

• Works with tiny amounts of training data 
(single example per class)

• The best classification model ever???

K Nearest Neighbors
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Some supervised learning algorithms
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Logistic Regression, SVMs, 
Perceptrons, KNN

Generative Models Discriminative Models

Estimate P(Y | X) directlyEstimate P(X, Y) first
• no explicit probability 

model

Can assign probability to observations, 
generate new observations

Only supports classification, less 
flexible

Often more parameters, but more 
flexible

Naive Bayes, Bayes Nets, VAEs, 
GANs

Often fewer parameters, better 
performance on small data

Naive Bayes, Bayes Nets, VAEs, 
GANs

Logistic Regression, SVMs, 
Perceptrons, KNN
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15

In the limit, I think these goals are the same. 
Even if we care about prediction (and we want to do it 
using as few models as possible), shouldn’t we get the 
best performance by modeling the “true” underlying 
process?
Isn’t it the case that correct explanatory/causal models 
necessarily make right predictions, but not vice-versa?

Counter argument: You can get perfect* predictive 
performance with the wrong model. We were 
extremely good at predicting whether objects would 
fall or float long before we knew about gravity.

Explanatory/causal models are hard! We might never 
get there. Maybe empirically accurate predictions 
should lead, and theory/explanation will follow?
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Supervised Classification
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Supervised Classification
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Supervised Classification

Label lovely good raw rubbery rather mushroomy gamy …

1 1 1 0 0 0 0 0 …

1 1 0 0 0 0 0 1 …

1 1 0 0 0 0 0 0 …

0 0 0 1 1 0 0 0 …

y X
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Supervised Classification

Label lovely good raw rubbery rather mushroomy gamy …

1 1 1 0 0 0 0 0 …

1 1 0 0 0 0 0 1 …

1 1 0 0 0 0 0 0 …

0 0 0 1 1 0 0 0 …

??? 1 0 1 0 1 0 1 ...

y X
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P(Y|X) = P(X|Y)P(Y)
P(X)

Bayes Rule
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Bayes Rule

Posterior

21

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)
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Bayes Rule

Posterior

Marginal / “Evidence”

22

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)

• Generally, very hard to estimate!
• Unsupervised learning techniques can be useful
• In Naïve Bayes, we will use some assumption about 

distribution of the features (e.g. multinomial, Gaussian)
• Since it is the same for all considered labels we can 

ignore it
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Bayes Rule

Posterior

PriorLikelihood

Marginal / “Evidence”

23

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)

• 𝑃 𝑋 𝑌 𝑃 𝑌 = 𝑃(𝑋, 𝑌)
• Equivalent to estimating joint distribution of 

features and label
• We estimate it form the labeled examples!
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Label lovely good raw rubbery rather mushroomy gamy …

1 1 1 0 0 0 0 0 …

1 1 0 0 0 0 0 1 …

1 1 0 0 0 0 0 0 …

0 0 0 1 1 0 0 0 …

Naïve Bayes

P(Y=1|lovely, good,…)
=P(lovely, good,…|Y=1)P(Y=1)
=P(Y=1, lovely, good,…)
=P(lovely|Y=1, good,…)P(Y=1, good,…)
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Label lovely good raw rubbery rather mushroomy gamy …

1 1 1 0 0 0 0 0 …

1 1 0 0 0 0 0 1 …

1 1 0 0 0 0 0 0 …

0 0 0 1 1 0 0 0 …

Naïve Bayes

P(C|x1, x2, …, xk)
=P(x1|x2, …, xk, C)P(x2|x3, …, xk, C)…P(xk|C)P(C)
=P(x1|C)P(x2|C)…P(xk|C)P(C)

Assume naively that the features are independent!
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Naïve Bayes

𝑥 𝑃(𝑥|𝑌 = 1) 𝑃(𝑥|𝑌 = 0)

lovely ?? ??

good ?? ??

raw ?? ??

rubbery ?? ??
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Question time

𝑥 𝑃(𝑥|𝑌 = 1) 𝑃(𝑥|𝑌 = 0)

lovely ?? ??

good ?? ??

raw ?? ??

rubbery ?? ??(a)1.0, 0.0
(b)1/2, 1/2
(c)1/3, 1/3
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Question time

𝑥 𝑃(𝑥|𝑌 = 1) 𝑃(𝑥|𝑌 = 0)

lovely ?? ??

good ?? ??

raw ?? ??

rubbery ?? ??(a)1.0, 0.0
(b)1/2, 1/2
(c)1/3, 1/3
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Naïve Bayes

𝑥 𝑃(𝑥|𝑌 = 1) 𝑃(𝑥|𝑌 = 0)
a 0.9 0.9
bit 0.2 0.4

dramatic 0.6 0.4
gamy 0.1 0.0

good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2

quite 0.7 0.8

Given a review “Quite mushroomy, a bit dramatic” 
what label should we predict?

𝑃(𝑌|𝑋)
= 𝑃(𝑋|𝑌)𝑃(𝑌)/𝑃(𝑋)
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Naïve Bayes

𝑥 𝑃(𝑥|𝑌 = 1) 𝑃(𝑥|𝑌 = 0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8

Given a review “Quite mushroomy, a bit dramatic” 
what label should we predict?

Generally, the distribution 
over the labels is unknown!
• Domain knowledge
• Estimate from data
• Naïve uniform assumption

30

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)
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𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)

We pick the label y 
𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑃(𝑌 = 𝑦|𝑋)

Naïve Bayes

𝑥 𝑃(𝑥|𝑌 = 1) 𝑃(𝑥|𝑌 = 0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8

Given a review “Quite mushroomy, a bit dramatic” 
what label should we predict?

31

𝑃(𝑌 = 1) 𝑃(𝑌 = 0)
0.3 0.7

Prior

For these values
a) Y=1
b) Y=0

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)
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𝑥 𝑃(𝑥|𝑌 = 0) 𝑃(𝑥|𝑌 = 1)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8

P(Y=0) P(Y=1)
0.3 0.7

P(Y=0 , X=x) = 0.9 x 0.2 x 0.6 x 0.2 x 0.7 x 0.3 = 0.005 

Prior

P(Y=1 , X=x) 0.9 x 0.4 x 0.4 x 0.2 x 0.8 x 0.7 = 0.016 
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Naïve Bayes– Generative model

x P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8
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Naïve Bayes– Generative model

x P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8
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Naïve Bayes– Generative model

x P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8
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Naïve Bayes – Generative model

x P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8
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Naïve Bayes – Generative model

x P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8
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Predictions with Linear Regression

y

x
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Regression Analysis in Stats Regression in ML

Make claims about whether there is a 
statistically significant relationship 
between X and Y

Given X, predict Y
Obtain a model to make predictions 
for new inputs

(Often) interested in correlation; 
focus on controlling false positives
and removing colinearity

Focused on prediction accuracy; 
exploiting correlation is totally fine

A “result” is typically in the form of a
decision on significant relationship
and/or p-value

A “result” is typically in the form of an 
improvement in prediction performance 
on a (held out) test set

Avoid overfitting by preferring simple 
models; 
avoid overclaiming by accounting for 
“degrees of freedom” when 
computing p values

Avoid overfitting through regularization; 
avoid overclaiming by maintaining 
train/test splits and reporting test 
performance
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Regression in Stats/ML

• Still, these are, fundamentally,  the same 
model

• These differences are “by convention”
• Different scientific communities with different 

goals
• The two methods yield different guarantees
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Training with Gradient Descent

𝑚∗ =

𝑏∗ =

41

𝑄 =A
"#$

%
B𝑌 − 𝑓 𝑥 & =A

"#$

%
B𝑌 − (𝑚𝑥 + 𝑏) &

We want to find the model 𝑓 𝑥 = 𝑚𝑥 + 𝑏 which minimizes the 
sum of squared predictions error (least squares-SLQ)

𝑄 minimized by

Parameters space 
(e.g., m)

𝑄

𝑚∗min𝑄
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Training with Gradient Descent

𝑚∗ =

𝑏∗ =

42

𝑄 =A
"#$

%
B𝑌 − 𝑓 𝑥 & =A

"#$

%
B𝑌 − (𝑚𝑥 + 𝑏) &

We want to find the model 𝑓 𝑥 = 𝑚𝑥 + 𝑏 which minimizes the 
sum of squared predictions error (least squares-SLQ)

𝑄 minimized by

Parameters space 
(e.g., m)

𝑄

𝑚∗min𝑄
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Training with Gradient Descent

𝑄 =A
"#$

%
B𝑌 − 𝑓 𝑥 & =A

"#$

%
B𝑌 − (𝑚𝑥 + 𝑏) &

• We cannot/don’t want to rely on asymptotic assumptions or convergence
• We don’t want to explore the entire space of possible parameters 

• Very computationally inefficient
• Can we explore the space in a smart way?
• Goal is unchanged: find the model that minimizes

Parameters space (e.g., m)

𝑄
Start with a random 
guess of the 
parameters (m,b) 
and compute 𝑄
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Training with Gradient Descent

• We compute the partial  derivative !"
!#

(the gradient) Q with 
respect to the parameter 𝑚 in correspondence of the selected 
point

• We adjust the current selection of the parameter value based on 
the sign of the derivative

• The new 𝑚 will be 𝑚 − α !"
!#

• α is a Hyperparameter called “learning rate”

• Positive derivative: re-evaluate 
for smaller value 𝑚

𝑄

𝑚
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Training with Gradient Descent

• We compute the partial  derivative !"
!#

(the gradient) Q with 
respect to the parameter 𝑚 in correspondence of the selected 
point

• We adjust the current selection of the parameter value based on 
the sign of the derivative

• The new 𝑚 will be 𝑚 − α !"
!#

• α is a Hyperparameter called “learning rate”

• Negative derivative: re-
evaluate for higher value 𝑚

𝑄

𝑚
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Training with Gradient Descent

46

• The process is repeated iteratively until no further reduction 
of 𝑄 is possible

• We can have stopping conditions (e.g., minimum 
improvement, maximum #iterations)

• #max iterations, learning rate, minimum improvement are 
the hyperparameters of the algorithm

𝑄

𝑚
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Training with Gradient Descent

47

• The process is repeated iteratively until no further reduction 
of 𝑄 is possible

• If there are multiple parameters, do the same operations for 
each feature individually in each iteration
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Training with Gradient Descent
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Stochastic Gradient Descent (SGD)

• It is an iterative method for optimizing an objective 
function with suitable smoothness properties 
(e.g. differentiable or subdifferentiable). 

• It can be regarded as a stochastic approximation of gradient 
descent optimization:
– It replaces the actual gradient calculated from the entire data set
– Uses an estimate calculated from a randomly selected subset of the data 

(generally a single point).

• Especially in high-dimensional optimization problems this 
reduces the very high computational burden
– Achieves faster iterations in trade for a lower convergence rate
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Stochastic Gradient Descent (SGD)

50

• How would you modify this?
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Training with Gradient Descent
Helpful equations for following along in the jupyter notebook
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Linear Regression for Classification?

y

x

1

0
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Logistic Regression

y

x

1

0

Sigmoid function
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Logistic Regression

x

1

0

P(
Y|

X)

We can interpret the computed 𝑦
as the probability of a point 
characterized by  features �⃗� to 
have label = 1
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Linear Regression

minimize
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Logistic Regression

minimize

Find the parameters 𝑤G which minimize the logistic loss
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Logistic Regression

minimize
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minimize

Logistic Regression
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minimize

Logistic Regression
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minimize

Logistic Regression

604/4/22 Lorenzo De Stefani - Data Science Fall'22 - CSCI 1951A



minimize

Logistic Regression
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x P(x|Y=1)
a 0.9
bit 0.2
dramatic 0.6
gamy 0.1
good 0.2
lovely 0.5
mushroo
my 0.2

quite 0.7

Logistic Regression

Naive Bayes
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Logistic Regression

x ???
a 0.9
bit 0.4
dramatic 1.0
gamy 0.7
good 0.2
lovely 0.4

mushroomy 0.8

quite 0.7

Logistic Regression What do these coefficient mean?
a) There is a 1.0 probability of observing 

“dramatic” given Y = 1
b) There is a 1.0 probability that Y = 1 given we 

observe “dramatic”
c) 1 is the co-efficient on the “dramatic” 

variable in the best fit linear regression.
d) 1 is the co-efficient on the “dramatic” 

variable in linear regression that minimizes 
the log loss.
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y

x

Logistic Regression - Prediction

What do we do 
now?
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y

x

Logistic Regression - Prediction

P(Y=1) = 0.38
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y

x

Logistic Regression - Prediction

P(Y=1) = 0.38

Decision line
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