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Today

Supervised learning: classification and
regression

k Nearest Neighbors

Generative vs. Discriminative Models
Nalve Bayes

Linear regression with gradient descent
Logistic Regression



Supervised vs. Unsupervised Learning

e Supervised: Explicit data labels

— Sentiment analysis—review text -> star ratings

— Image tagging—image -> caption

* Unsupervised: No explicit labels
— Clustering—find groups similar customers

— Dimensionality Reduction—find features that
differentiate individuals
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I clicks

reading level

The predictor partitions the points in classes

* Assigns a “label” associate with the class
* Discrete output

Binary classification with two classes
 E.g., “clicked, not clicked”

f(reading level) = {clicked

\_
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Regression

clicks

N\
N\

The predictor provides an estimate of the
value of interest

* Returns real values
clicks
m and b are the parameters of the
model to be estimated

\_

~

m(reading_level) + b

/
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lassification: a probabilistic interpretation

We want to learn a predictor for the label Y based

on observations of observed values X:

 We can study the distribution of the labels
given the values X

P(Y]X)

RN

Label Features

* P(email is spam | words in the message)
* P(genre of song|tempo, harmony, lyrics...)
* P(article clicked | title, font, photo...)
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harmonic complexity

tempo
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harmonic complexity

tempo
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ors

‘ Blue or Green?

harmonic complexity

tempo
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_\Ieighbors - Classification

* Look at the k-nearest
neighbors and take the
majority vote

* Assign to the new point the
majority label

o
7

1

harmonic complexity

tempo
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_K Nearest Neighbors

harmonic complexity

e Kis the parameter that denotes the
complexity of the model
K=5 * The higher K the more complex
assignments we can realize

\ * How do we decide which are the

— nearest points/neighbors?

/ * Use a measure (e.g., Euclidian
Distance)

e If multiple features, normalize
the values and/or use
opportune weights
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tempo
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-est Neighbors - Regression

* KNN can also be used for
regression
~ e The prediction of the value is based

> ~ ~ on the the values of neighboring
= ~ points
o ~
€ ~
S ~
O ~
.g ~
£ S
e ~

tempo

What is its harmonic complexity?

4/4/22 Lorenzo De Stefani - Data Science Fall'22 - CSCI 1951A 10



-\Iearest Neighbors - Regression

 Example: | want to estimate
harmonic complexity (Y) given
tempo (X)

* |select the K neighbors whose
tempo (X) values are the nearest to
that of the point being considered

* The predicted value is is obtained
by averaging the values of the Y
values of the neighbors

harmonic complexity

tempo

What is its harmonic complexity?
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- K Nearest Neighbors

4/4/22

Arguably the simplest ML algorithm

“Non-Parametric” — no assumptions about
the form of the classification model

No explicit training phase:
— All the work is done at prediction time

Works with tiny amounts of training data
(single example per class)
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Ised learning algorithms

Input data Nearest Neighbors Linear SVM RBF SVM Gaussian Process Decision Tree Random Forest

Neural Net AdaBoost

Naive Bayes
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.nerative Models

Estimate P(X, Y) first

Can assign probability to observations,
generate new observations

Often more parameters, but more
flexible

Naive Bayes, Bayes Nets, VAEs,
GANs

4/4/22

Discriminative Models

Estimate P(Y | X) directly

* no explicit probability
model

Only supports classification, less
flexible

Often fewer parameters, better
performance on small data

Logistic Regression, SVMs,
Perceptrons, KNN
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In the limit, | think these goals are the same.
Even if we care about prediction (and we want to do it
using as few models as possible), shouldn’t we get the
best performance by modeling the “true” underlying
process?

Isn’t it the case that correct explanatory/causal models
necessarily make right predictions, but not vice-versa?

Counter argument: You can get perfect™ predictive
performance with the wrong model. We were
extremely good at predicting whether objects would
fall or float long before we knew about gravity.

Explanatory/causal models are hard! We might never
get there. Maybe empirically accurate predictions
should lead, and theory/explanation will follow?
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- Supervised Classification

Good i not dramatic fizz, * kK

Ru.bberv - rother oxidised. *

Gamv, succulent tannins, Loveti. XA KK

Provence herbs, creamy, lovely, AR

Lovetv muskrooml\r\ose and good length, KKK

Quite raw finish, A bit ru.bberv. *%

4/4/22 Lorenzo De Stefani - Data Science Fall'22 - CSCI 1951A 16



. Supervised Classification

Lovetﬁ mushroomy nose and good Lehg&k_, 1

Gamw succulent tannins, Lovet:. | 1

Provence herbs, creamy, Lovely, 1

Good ¢ not dramatic fizz,

SammmpmETT

Quite raw finish, A bik rubbery,

Comeesestee-

Ru.bbe.r: - rather oxidised.

SammmpmwTT
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- Supervised Classification

y X
Label || lovely good raw  rubbery rather  mushroomy gamy
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
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- Supervised Classification

Y X
Label || lovely good raw rubbery  rather mushroomy gamy
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
P77 1 0 1 0 1 0 1
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ule

P(Y |X) = P(X|Y)P(Y)
P(X)
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. BayesRuke

PCYI) = P(X|Y)P(Y)

P(X)

Posterior
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- Bayes Rule

4/4/22

P(X|Y)P(Y)
P(X)

Marginal / “Evidence”

P(Y|X) =

Posterior

Generally, very hard to estimate!

Unsupervised learning techniques can be useful

In Naive Bayes, we will use some assumption about
distribution of the features (e.g. multinomial, Gaussian)

Since it is the same for all considered labels we can
ignore it
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- Bayes Rule

P(X|Y)P(Y)
PIYIX) = =

Marginal / “Evidence”

« P(X|Y)P(Y)=P(X,Y)

e Equivalent to estimating joint distribution of
features and label

* We estimate it form the labeled examples!

4/4/22 Lorenzo De Stefani - Data Science Fall'22 - CSCI 1951A



~ Naive Bayes

Label lovely good raw  rubbery rather  mushroomy gamy

1 1 1 0 0 0 0 0

P(Y=1[lovely, gooq,...)

=P(lovely, good,...|Y=1)P(Y=1)

=P(Y=1, lovely, good,...)

=P(lovely|Y=1, good,...)P(Y=1, good,...)
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BN Naive Bayes

Label lovely good raw  rubbery rather  mushroomy gamy

1 1 1 0 0 0 0 0

P(C|x1, X2, ..., Xk)
=P(x1|x2, ..., Xk, C)P(x2|X3, ..., Xk, C)...P(xk| C)P(C)
=P(x1]| C)P(x2| C)...P(xx| C)P(C)

Assume naively that the features are independent!
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L Naive Bayes

Lovely mushroomy nose and good length. 1 Quite raw finish. A bit rubbery. 0
Gamy, succulent tannins. Lovely. 1 Gowt dramatic _EE_Z_-(;M
Provence herbs, creamy, lovely. 1 Rubbery - rather oxidised. 0
X P(x|lY =1) Px|Y =0)
lovely ?7? ?7?
good ?7? ?7?
raw ?7? ?7?

rubbery ?7? ?7?
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© Questiontime

Lovely mushroomy nose and good length. 1 Quite raw finish. A bit rubbery. 0

Gamy, succulent tannins. Lovely. 1 Good if not dramatic fizz. 0
Provence herbs, creamy, lovely. 1 Rubbery - rather oxidised. 0
X P(x|lY =1) Px|Y =0)
good ?7? ?7?

(a)1.0, 0.0
(b)1/2, 1/2
(c)1/3, 1/3
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© Questiontime

Lovely mushroomy nose and @_ood!len_gth. 1 Quite raw finish. A bit rubbery. 0

Gamy, succulent tannins. Lovely. 1 Goodlif not dramatic fizz. 0
Provence herbs, creamy, lovely. 1 Rubbery - rather oxidised. 0
X P(x|Y =1) P(x|Y =0)
good ?7? ?7?

(a)1.0, 0.0
(b)1/2,1/2
V ()1/3,1/3
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- Nailve Bayes

Given a review “Quite mushroomy, a bit dramatic”
what label should we predict?

X P(x|Y =1) P(x|Y =0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite | 0.7 0.8

P(Y|X)

= P(X|Y)P(Y)/P(X)
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Nailve Bayes

Given a review “Quite mushroomy, a bit dramatic”
what label should we predict?

a
bit

dramatic
gamy

good

lovely
mushroomy

quite

4/4/22

P(x|lY =1) Px|Y =0) P(YlX) — P(le)P(Y)
0.9 0.9 P(X)
0.2 0.4
0.6 0.4 Generally, the distribution
o1 00 over the labels is unknown!
0.2 0.2 ,
05 01 * Domain knowledge
0.2 0.2  Estimate from data
0.7 0.8 * Naive uniform assumption

Lorenzo De Stefani - Data Science Fall'22 - CSCI 1951A 30



Naive Bayes

Given a review “Quite mushroomy, a bit dramatic”
what label should we predict?

P(X|Y)P(Y)
X P(x|Y =1) P(x|Y =0) P(YlX) —
a 0.9 0.9 p(X)
bit 0.2 0.4
dramatic 0.6 0.4 4 Prior )
gamy 0.1 0.0 P(Y — 1) P(Y — 0)
good 0.2 0.2
lovely 0.5 0.1 \_ 0.3 0.7
mushroomy 0.2 0.2
quite 0.7 08 We pick the label y

argmax, P(Y = y|X)

For these values
a) Y=1
b) Y=0



X
a

bit

dramatic
gamy

good

lovely
mushroomy
quite

P(x|Y =0) Px|lY=1)

0.9
0.2
0.6
0.1
0.2
0.5
0.2
0.7

0.9
0.4
0.4
0.0
0.2
0.1
0.2
0.8

P(Y=0)
0.3

P(Y=0, X=x)=0.9x0.2x 0.6 x0.2x0.7 x 0.3 =0.005
P(Y=1,X=x)09x0.4x04x0.2x0.8x0.7=0.016
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- Bayes— Generative model

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1

& mushroomy 0.2 0.2

\ . quite 0.7 0.8

R ’

4/4/22 Lorenzo De Stefani - Data Science Fall'22 - CSCI 1951A



- Bayes— Generative model

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1

& mushroomy 0.2 0.2

\ quite 0.7 0.8

< A .. 08

R et
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_ Bayes— Generative model

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8
A quite ... 0.63
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_Bayes — Generative model

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8

A quite dramatic ... 0.38
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-ayes — Generative model

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
quite 0.7 0.8

A quite dramatic gamy ... 0.04
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Y = wW1T1 + Wax2 + *** + WETk
Yy =w

- X
¢ .
_ AT
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-sis in Stats Regression in ML

Make claims about whether thereisa | Given X, predictY
statistically significant relationship Obtain a model to make predictions
between X and Y for new inputs

(Often) interested in correlation;
focus on controlling false positives
and removing colinearity

Focused on prediction accuracy;
exploiting correlation is totally fine

A “result” is typically in the form of a A “result” is typically in the form of an
decision on significant relationship improvement in prediction performance
and/or p-value on a (held out) test set

Avoid overfitting by preferring simple Avoid overfitting through regularization;
models; avoid overclaiming by maintaining

avoid overclaiming by accounting for train/test splits and reporting test
“degrees of freedom” when performance

computing p values
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Regression in Stats/ML

Still, these are, fundamentally, the same
model

These differences are “by convention”

Different scientific communities with different
goals

The two methods yield different guarantees



Training with Gradient Descent

We want to find the model f(x) = mx + b which minimizes the
sum of squared predictions error (least squares-SLQ)

Q=) (T-fe) =) (7 (nx+bh)?

() minimized by
. Cov(X,Y)
"o Var(X)
=Y —mX m*

Parameters space
(e.g., m)



Training with Gradient Descent

We want to find the model f(x) = mx + b which minimizes the
sum of squared predictions error (least squares-SLQ)

Q=) (T-fe) =) (7 (nx+bh)?

() minimized by

. Cov(X,Y)
"o Var(X)
=Y —mX

Parameters space
(e.g., m)



-ining with Gradient Descent

* We cannot/don’t want to rely on asymptotic assumptions or convergence

 We don’t want to explore the entire space of possible parameters
* Very computationally inefficient
 (Can we explore the space in a smart way?

* Goalis unchanged: find the model that minimizes

Q=) (F=f@)' =) (= (mx+b)

Start with a random
guess of the
parameters (m,b)
and compute

Parameters space (e.g., m)

4/4/22 Lorenzo De Stefani - Data Science Fall'22 - CSCI 1951A
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-ing with Gradient Descent

/
/

‘0@
om

= zn: —2X,;(YL' —b— sz)

=1

e Positive derivative: re-evalu:
for smaller value m

« We compute the partial derivative g—i (the gradient) Q with

respect to the parameter m in correspondence of the selected
point
* We adjust the current selection of the parameter value based on

the sign of the derivative

) 0
e The new m will be m — oc—Q
om

* « isaHyperparameter called “learning rate”
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-ing with Gradient Descent

4/4/22

A\
\

aQ

0 o= Y —2X;(Y; — b—mX;)

=1

A * Negative derivative: re-
< evaluate for higher value m

m

We compute the partial derivative 2_31 (the gradient) Q with

respect to the parameter m in correspondence of the selected
point
We adjust the current selection of the parameter value based on

the sign of the derivative

) 0
The new m will be m — oc—Q
om

a is a Hyperparameter called “learning rate”
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-ining with Gradient Descent

 The process is repeated iteratively until no further reduction
of Q is possible

* We can have stopping conditions (e.g., minimum
improvement, maximum #iterations)

* #max iterations, learning rate, minimum improvement are
the hyperparameters of the algorithm

|

Y

m

46
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-g with Gradient Descent

 The process is repeated iteratively until no further reduction
of Q is possible

e |If there are multiple parameters, do the same operations for
each feature individually in each iteration

def update_weights(m, b, X, Y, learning_rate):
m_deriv = 0
b_deriv = 0
N = len(X)
for i in range(N):
# Calculate partial derivatives
# -2x(y - (mx + b))
m_deriv += -2xX[i] * (Y[i] - (mxX[i] + b))

# -2(y — (mx + b))
b_deriv += -2%(Y[i] - (mxX[i] + b))

# We subtract because the derivatives point in direction of steepest ascent
m —= (m_deriv / float(N)) * learning_rate
b —= (b_deriv / float(N)) * learning_rate

return m, b
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- with Gradient Descent

Function Curve Error Surface
1 .................................... R R R LR PP PP PP X

[teration = 100
Weight =-0.10
Bias =0.49

0.8

Qutput
Error

0.2 ....................................
0 :
-5 0 5
Input
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-chastic Gradient Descent (SGD)

* |tis an iterative method for optimizing an objective
function with suitable smoothness properties
(e.g. differentiable or subdifferentiable).

* It can be regarded as a stochastic approximation of gradient
descent optimization:
— It replaces the actual gradient calculated from the entire data set
— Uses an estimate calculated from a randomly selected subset of the data
(generally a single point).
* Especially in high-dimensional optimization problems this
reduces the very high computational burden

— Achieves faster iterations in trade for a lower convergence rate
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c Gradient Descent (SGD)

* How would you modify this?

def update_weights(m, b, X, Y, learning_rate):
m_deriv = 0
b_deriv = 0
N = len(X)
for i in range(N):
# Calculate partial derivatives
# -2x(y - (mx + b))
m_deriv += -2%X[i] * (Y[i] - (mkX[i] + b))

# -2(y - (mx + b))
b_deriv += -2x(Y[i] - (mxX[i] + b))

# We subtract because the derivatives point in direction of steepest ascent
m —= (m_deriv / float(N)) * learning_rate

b —= (b_deriv / float(N)) * learning_rate

return m, b
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-ing with Gradient Descent

Helpful equations for foIIowing along in the jupyter notebook

Q = Z (mX; +b))?

oQ

- :Z—Z(Yz-—mXi—b):O

1=1

sz i —b—mX;) =0
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X
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~ . Logistic Regressior

B 1
14 e (@)

1 '”__

Y Sigmoid function

4/4/22 Torenzo De Stefani - Data Science Fall'22 - CSCI 1951A

53



yzl_

We can interpret the computed y
as the probability of a point
characterized by features x to
have label =1

o 00

4/4/22
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~ Linear Regression

ey (Y= Y)?

1=1

4/4/22 Lotrenzo De Stefani - Data Science Fall'22 - CSCI 1951A
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~ Logistic Regression

Find the parameters w; which minimize the logistic loss

A

minimize —lOgP(Y‘Y)
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~ Logistic Regression

minimize  —YlogY + (1 — Y)log(1 —Y)

4/4/22 Lotrenzo De Stefani - Data Science Fall'22 - CSCI 1951A
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~ Logistic Regression

minimize  —YlogY + (1 — Y)log(1 —Y)
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~ Logistic Regression

minimize  —YlogY + (1 — Y)log(1 —Y)
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~ Logistic Regression

minimize  —YlogY + (1 — Y)log(1 —Y)
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~ Logistic Regression

minimize  —YlogY + (1 — Y)log(1 —Y)

Oloss
ow

4/4/22 Lotrenzo De Stefani - Data Science Fall'22 - CSCI 1951A

61



. Logistic Regression

4/4/22

Naive Bayes
X P(x|Y=1)
a 0.9
bit 0.2
dramatic 0.6
gamy 0.1
good 0.2
lovely 0.5
:;’Jsh roo 0.2

quite

0.7
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Logistic Regression

Logistic Regression  What do these coefficient mean?

a) There is a 1.0 probability of observing
X 2?27 “dramatic” givenY =1
b) There is a 1.0 probability that Y =1 given we
d 0.9 observe “dramatic”
bit 0.4 c) 1isthe co-efficient on the “dramatic”
dramatic 1.0 ~variable in the best fit linear regression.
«d) 1 is the co-efficient on the “dramatic”

gamy 0.7 variable in linear regression that minimizes
good 0.2 the log loss.
lovely 0.4

mushroomy 0.8

quite 0.7



What do we do
now?

y ‘ ‘
Quite mushroomy, ‘
a bit dramatic. ‘

Mm e ®

X
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- Regression - Prediction

1 4 e~ (W-Z) ]
S
7
/
/
/
I
|
|
/
Y P(Y=1) = 0.38
_ ~”~
" —
X
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_c Regression - Prediction

- —
1 + 6—(fw X)
~ - -
7
/
/
y I
I Decision line
_.______________T ________________
I
/
/ P(Y=1) =0.38
_ ”
—r?— _
X
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