Lesson 2-4 Distributed Matrix Multiply

Matrix Multiply: Basic Definitions
C — C + A*B — This is the dot product of row A and column B and accumulating the sum into
the output.

The Matrix Multiply as pseudo code:
fori— 1tomdo
forj<—1tondo
forl —itokdo
Cli,jl < CIi,l] + Ai,I] . BJLj]

The Time to complete the algorithm is:
T.(m,n,k) =0O(mnk) — T.(m,n,k) = O(n®) when m=n=k

The Matrix Multiply as Parallel pseudo code:
parfori «— 1 to m do
parfor j — 1 to n do
forl —itokdo
Cli,j] < CI[i,I1 + A[i,I] . B[l,j]

This means each ‘row’ and ‘column’ could actually represent a sub matrix.
The third loop is a reduction.

The Matrix Multiply as Parallel pseudo code:
parfori «— 1 to mdo
parfor j — 1 to n do
let T[1:k] = temp array
parfor | — 1 to k do
T < A[i,I] . B[l,k]
Cli,jl < CIi,j] + reduce(T[:])

W(n) = O(n°)
D(n) = O(log n)

A Geometric View

Using a cube - the rows and columns can be projected onto the cube. The three matrices are
areas on the x, y, z planes. If the the three projections intersect - the matrices can be multiplied.
The resulting volume is the set of multiplications that need to be done.



According to Loomis and Witney: The volume of | is ..... [I] <= +|sA| |sB| |sC]|

If there is no intersection between the surface projections - there will be no multiplications.
1D Algorithms
How should the Matrix multiply be accomplished on a distributed machine?

Using Block Row Distribution : this means each node gets n/P rows. (assume the matrices are
square and that n is divisible by P).

What is the most work that can be done by a node given the above data distribution?

Since a, b, c have to be multiplied - one of them has to be shifted, convention says ‘B’ is
shifted.

1-D Block Row Distribution Pseudo Code

let A’[1: n/P] [1:n] = local part of A
B’, C'=sameforB, C

let B”[1:n/P][1:n] = temp storage

letr ., < (RANK + 1) mod P
Moy < (RANK + P -1) mod P

forL — 0to P-1do
CLIE] += AL]--L...] . B[...L...][2] (...L... is a placeholder for the local indices)
sendAsync (B’ —r_,,) (send the local buffer to the next processor)
recvAsync (B” «r_.,) (receive from the previous processor)
wait(*) (wait for send and recv to complete)
swap(B’, B”) (swap the receive buffer with the compute buffer)

1D Algorithm Cost
The cost of the algorithm is ...

T = time per "flop" (flop means ...1 floating point multiply or add)

Total timeis ... T,,(n,P)=2tr*/P
How much time is spent on communication?

B’ is the only data communicated. It's size is n/P words by n columns - so n?/P words.



There are P sends that have to be paid for.
So the total cost of communication is : aP + pn?

1D Algorithm Cost Part 2
The running time of the algorithm is flops + communication time.

T, p(n;P) = 2tn® + aP + Bn?

Getting more speed from the algorithm:
Here is the pseudo code, rearranging the code can improve the speed.

let A'[1: n/P] [1:n] = local part of A
B’, C’ =same for B, C

let B”[1:n/P][1:n] = temp storage
letr .« (RANK+ 1) mod P
Moy < (RANK + P -1) mod P

forL — 0to P-1do
CLI1+=ATI-..L...]. B ...L...][:]
sendAsync (B’ —r
recvAsync (B” «r
wait(*)
swap(B’, B”)

next

next)

prev)

Rearranged pseudo code:

let A’[1: n/P] [1:n] = local part of A
B’, C’ =same for B, C

let B”[1:n/P][1:n] = temp storage
letr .« (RANK + 1) mod P
Mo < (RANK + P -1) mod P
forL < 0to P-1 do
sendAsync (B’ —r
recvAsync (B” <)
CLI:I+=ATTIL..L...] . B...L...][2]
wait(*)
swap(B’, B”)

next

next)



The communication is now done BEFORE the computations - gaining a little speed in the
process.

This could improve running time by a factor of 2. We can see this as:

T (n;P) = max(2tn’/P, aP + Pn?)

1D, overlap

This uses the factthat : a + b <2 *max(a,b)

Efficiency and the 1D Algorithm

Recall the running time: T .., (1 P) = max(2tn’/P, aP + Bn?)

Speedup: S,,(n;P) =T«(n)/ Tp(n; P)= P/ max(1, 1/2 * a/t * P*n® + 1/2 = B/t * P/n)

= 0(P)

Parallel Efficiency = Speedup / P = E(n; P)

A parallel system is efficient if its parallel efficiency is constant. This occurs when:
n = Q(P)

According to the equation ... if you double the number of nodes - you have to double the
dimension of the problem. But doubling the size of the dimension (since matrices are involved)
will lead to quadruple the size of the matrices. The number of flops will increase by a factor of 8.
If you can’t (or don’t) double the dimensions you will see diminishing returns in increasing the

parallelism.

Isoefficiency Function is: n = Q(P) — the value of P that n must satisfy to have constant
parallel efficiency.

Temporary Storage: the B” needs temporary storage. The 3 matrices and 1 temp. matrix.

Temporary Storage — M(n;P) = 3 + 1)n/P * n = 4n?/P



IsoEfficiency
E(n;P) = S(n;P)/P = T.(n) / P*T(n;P)

Parallel Cost = P*T(n;P) = 1/((1 + P/t)log P + (a/t)(log P)/n

T = time per scalar add
T, .(n;P) = tnlog P + alog P + Pnlog P
Notice: there is no setting of n that will make E(n;P) a constant.

1/((1+P/t)log P — goes to infinity as n increases.

A 2D Algorithm SUMMA

Begins with a 2D distribution of the matrix operands. Each node is responsible for updating the
part of the ‘C’ matrix that it owns.

The SUMMA algorithm begins by integrating strips of width and height I.
So:
forl < 1ton/S do
broadcast(horizontal strip, (owner))
broadcast(vertical strip,(owner))

The run time:
Assume: nxn matrices, VP VP mesh, Pand s both divisible by n.
Tsommam: Pys) = nls * 2t = (n’s/P) + T,,(n;P,s)
=2t’/P + T,,nP,s)

SUMMA Communication Time

T .= Ola*n/s * logP + B*nz/\/ﬁ*logP) — Tree

net

T = O(a*n/s ¥ P + Bp*nNP) — Bucket

net

Efficiency of 2D SUMMA

The 2D SUMMA is more scalable than the 1D Block.



Note: ‘s’ is the width of the strip, it is also the tuning parameter of the algorithm.
n,.P) = QOP log P)
np(P) = Q(P)

nbucket(P) = Q(P5/6)

The bucket is slightly worse than the tree, it trades a higher latency cost for a lower
communication cost.

SUMMA Memory
The amount of memory needed for SUMMA is:

Mggya= 3*n*P + 2%g *n/\/F)
> 4%/ P when s > 172 * n/NP
A smaller ‘s’ increases latency time.

If s is at it's maximum value, the SUMMA algorithm might need 5 times VP amount of storage.

A Lower Bound on Communication
lower bound - the number of words a node MUST communicate.
each phase sends and receives exactly ‘m’ words.

S Sz Sc— the set of unique elements of each matrix seen in this phase.

Max # multiplies per phase < [|S,| * Sy *|Sc| < 2% 2« M

L

v

# full Phases > [W/max # multiplies per phase] ¢ oor

L>wieV2* m”?

Y

# words communicated by 1 node > (# full phases) * M

# words communicated by 1 node = Q(n? /\/17)



A Lower Bound on Communication
T, (n:P) = Qa * VP + px*n?/[P)

T summa, net (M; P.8) = {(1 * nls * logP + B x2NP * log P (tree) }
a*nls *\NP + B NP (bucket)
(assume: 1 < s < n/VP)

T, (NP)= Q(aVP + B+ n/NP) assume: M=0(n 2/P)

Lower

Cannon’s



