CS 170 Homework 10

Due $4 / 12 / 2023$, at 10:00 pm (grace period until 11:59pm)

1 Study Group

List the names and SIDs of the members in your study group. If you have no collaborators, you must explicitly write "none".

2 Flow vs LP

You play a middleman in a market of m suppliers and n purchasers. The i-th supplier can supply up to $s[i]$ products, and the j-th purchaser would like to buy up to $b[j]$ products.

However, due to legislation, supplier i can only sell to a purchaser j if they are situated at most 1000 miles apart. Assume that you're given a list L of all the pairs (i, j) such that supplier i is within 1000 miles of purchaser j. Given $m, n, s[1 . . m], b[1 . . n]$, and L as input, your job is to compute the maximum number of products that can be sold. The runtime of your algorithm must be polynomial in m and n.

For parts (a) and (b), assume the product is divisible - that is, it's OK to sell a fraction of a product.
(a) Show how to solve this problem, using a network flow algorithm as a subroutine. Describe the graph and explain why the output from the network flow algorithm gives a valid solution to this problem.
(b) Formulate this as a linear program. Explain why this correctly solves the problem, and the LP can be solved in polynomial time.
(c) Now let's assume you cannot sell a fraction of a product. In other words, the number of products sold by each supplier to each purchaser must be an integer. Which formulation would be better, network flow or linear programming? Explain your answer.

3 Reduction to 3-Coloring

Given a graph $G=(V, E)$, a valid 3 -coloring assigns each vertex in the graph a color from \{red, green, blue\} such that for any edge $(u, v), u$ and v have different colors. In the 3 -coloring problem, our goal is to find a valid 3 -coloring if one exists. In this problem, we will give a reduction from 3-SAT to the 3 -coloring problem. Since we know that 3 -SAT is NP-Hard (there is a reduction to 3 -SAT from every NP problem), this will show that 3 -coloring is NP-Hard (there is a reduction to 3-coloring from every NP problem).

In our reduction, the graph will start with three special vertices, labelled $v_{\text {TRUE }}$, $v_{\text {FALSE }}$, and $v_{\text {BASE }}$, as well as the edges ($\left.v_{\text {TRUE }}, v_{\text {FALSE }}\right)$, $\left(v_{\text {TRUE }}, v_{\text {BASE }}\right)$, and ($\left.v_{\text {FALSE }}, v_{\text {BASE }}\right)$.
(a) For each variable x_{i} in a 3-SAT formula, we will create a pair of vertices labeled x_{i} and $\neg x_{i}$. How should we add edges to the graph such that in any valid 3 -coloring, one of $x_{i}, \neg x_{i}$ is assigned the same color as $v_{\text {TRUE }}$ and the other is assigned the same color as $v_{\text {FALSE }}$?

Hint: any vertex adjacent to $v_{\text {BASE }}$ must have the same color as either $v_{\text {TRUE }}$ or $v_{\text {FALSE }}$. Why is this?
(b) Consider the following graph, which we will call a "gadget":

Consider any valid 3 -coloring of this graph that does not assign the color red to any of the gray vertices $\left(v_{1}, v_{2}, v_{3}, v_{9}\right)$. Show that if v_{9} is assigned the color blue, then at least one of $\left\{v_{1}, v_{2}, v_{3}\right\}$ is assigned the color blue.

Hint: it's easier to prove the contrapositive!
(c) We have now observed the following about the graph we are creating in the reduction:
(i) For any vertex, if we have the edges $\left(u, v_{\text {FALSE }}\right)$ and ($\left.u, v_{\text {BASE }}\right)$ in the graph, then in any valid 3 -coloring u will be assigned the same color as $v_{\text {TRUE }}$.
(ii) Through brute force one can also show that in a gadget, if all the following hold:
(1) All gray vertices are assigned the color green or blue.
(2) v_{9} is assigned the color blue.
(3) At least one of $\left\{v_{1}, v_{2}, v_{3}\right\}$ is assigned the color blue.

Then there is a valid coloring for the white vertices in the gadget.

Using these observations and your answers to the previous parts, give a reduction from 3-SAT to 3 -coloring. Prove that your reduction is correct (you do not need to prove any of the observations above).
Hint: create a new gadget per clause!

