
CS 170, Spring 2024 Homework 8 P. Raghavendra and C. Borgs

CS 170 Homework 8

Due 3/18/2024, at 10:00 pm (grace period until 11:59pm)

1 Study Group

List the names and SIDs of the members in your study group. If you have no collaborators,
you must explicitly write “none”.

2 Faster Longest Increasing Subsequence

Recall the dynamic programming algorithm for LIS from lecture. It has the recurrence,

L[i] = max
j<i:A[j]<A[i]

L[j] + 1,

where L[i] is the length of the longest increasing subsequence that includes and ends at A[i].
Using DP to compute all the L[i]’s takes O(N2) time, where N is the length of the array A.
In this problem, we will see how to reformulate the problem so that we can use binary search
to obtain a O(N logN) time algorithm.

Consider the following subproblem definition:

Mi[j] = the smallest element that ends any subsequence of length j for A[1 . . . i].

where Mi is 1-indexed.

We can set Mi[k] = ∞ if no increasing subsequence of length k exists in A[1 . . . i].

(a) Given the following array of length 10, compute the values of M8. Recall that M8 only
considers the elements A[1 . . . 8]. What is the length of the LIS of A[1 . . . 8], and what
is the last element of the LIS?

5 3 7 4 1 2 5 7 8 3

(b) Show that Mi is a strictly increasing array, i.e. that Mi[j] < Mi[j + 1] for all j =
1, . . . , N − 1.

Hint: Suppose there exists some j such that Mi[j] ≥ Mi[j + 1], and show that this
implies a contradiction.

(c) Given the same array as part (a), compute M10.

(d) Let j be the smallest index such that Mi[j] ≥ A[i + 1]. Prove that the length of the
LIS ending on A[i+ 1] is j.

Hint: Use the result from (b) to show that there exists a length j increasing subsequence
ending on A[i+ 1], and that there exist no longer increasing subsequence.

1

CS 170, Spring 2024 Homework 8 P. Raghavendra and C. Borgs

(e) Now show that only one element differs between Mi and Mi+1. Recall that Mi only
accounts for A[1 . . . i], so we are trying to prove Mi+1 can be computed for A[1 . . . i+1]
by taking Mi and modifying one element.

(f) Now combining the previous subparts, write pseudocode that finds the longest increas-
ing subsequence of an array A in O(N logN) time.

Hint: a naive implementation using the 2D subproblem Mi[j] would still yield a runtime
of O(N2). To achieve the O(N logN) runtime, you only need to store a single 1D array
M . Then, efficiently update M by using previous subparts.

2

CS 170, Spring 2024 Homework 8 P. Raghavendra and C. Borgs

3 Max Independent Set Again

You are given a connected tree T with n nodes and a designated root r, where every vertex v
has a weight W [v]. A set of nodes S is a k-independent set of T if |S| = k and no two nodes
in S have an edge between them in T . The weight of such a set is given by adding up the
weights of all the nodes in S, i.e.

W (S) =
∑
v∈S

W [v].

Given an integer k ≤ n, your task is to find the maximum possible weight of any k-
independent set of T . We will first tackle the problem in the special case that T is a binary
tree, and then generalize our solution to a general tree T .

(a) Assume that T is a binary tree, i.e. every node has at most 2 children. Describe
an O(nk2) algorithm that solves this special case, and analyze its runtime. Proof of
correctness and space complexity analysis are not required.

(b) Now, consider any arbitrary tree T , with no restrictions on the number of children per
node. Describe how we can add up to O(n) “dummy” nodes (i.e. nodes with weight 0)
to T , as well as some edges, to convert it into a binary tree Tb.

(c) Describe an O(nk2) algorithm to solve the general case (i.e. when T is any arbitrary
tree), and analyze its runtime. Proof of correctness and space complexity analysis are
not required.

Hint: there exists two ways (known to us) to solve this. One way is to combine parts
(a) and (b), and then modify the recurrence to account for the dummy nodes. The other
way involves 3D dynamic programming, in which you directly extend your recurrence
from part (a) to iterate across vertices’ children. We recommend the first way as it may
be easier to conceptualize, but in the end it is up to you!

3

CS 170, Spring 2024 Homework 8 P. Raghavendra and C. Borgs

4 Canonical Form LP

Recall that any linear program can be reduced to a more constrained canonical form where
all variables are non–negative, the constraints are given by ≤ inequalities, and the objective
is the maximization of a cost function.

More formally, our variables are xi. Our objective is max c⊤x = max
∑

i cixi for some con-
stants ci. The jth constraint is

∑
i aijxi ≤ bj for some constants aij , bj . Finally, we also have

the constraints xi ≥ 0.

An example canonical form LP:

maximize 5x1 + 3x2

subject to

x1 + x2 − x3 ≤ 1

−(x1 + x2 − x3) ≤ −1

−x1 + 2x2 + x4 ≤ 0

−(−x1 + 2x2 + x4) ≤ 5

x1, x2, x3, x4 ≥ 0

For each of the subparts below, describe how we should modify it to so that it satisfies
canonical form. If it is impossible to do so, justify your reasoning.

Note that the subparts are independent of one another. Also, you may assume that variables
are non-negative unless otherwise specified.

(a) Min Objective: min
∑

i cixi

(b) Lower Bound on Variable: x1 ≥ b1

(c) Bounded Variable: b1 ≤ x1 ≤ b2

(d) Equality Constraint: x2 = b2

(e) More Equality Constraint: x1 + x2 + x3 = b3

(f) Absolute Value Constraint: |x1 + x2| ≤ b2 where x1, x2 ∈ R

(g) Another Absolute Value Constraint: |x1 + x2| ≥ b2 where x1, x2 ∈ R

(h) Min Max Objective: minmax(x1, x2, x3, x4)

Hint: use a dummy variable!

4

CS 170, Spring 2024 Homework 8 P. Raghavendra and C. Borgs

5 Baker

You are a baker who sells batches of brownies and cookies (unfortunately no brookies... for
now). Each brownie batch takes 4 kilograms of chocolate and 2 eggs to make; each cookie
batch takes 1 kilogram of chocolate and 3 eggs to make. You have 80 kilograms of chocolate
and 90 eggs. You make a profit of 60 dollars per brownie batch you sell and 30 dollars per
cookie batch you sell, and want to figure out how many batches of brownies and cookies to
produce to maximize your profits.

(a) Formulate this problem as a linear programming problem; in other words, write a linear
program (in canonical form) whose solution gives you the answer to this problem. Draw
the feasible region, and find the solution using Simplex.

(b) Suppose instead that the profit per brownie batch is P dollars and the profit per cookie
batch remains at 30 dollars. For each vertex you listed in the previous part, give the
range of P values for which that vertex is the optimal solution.

5

CS 170, Spring 2024 Homework 8 P. Raghavendra and C. Borgs

6 [Coding] Traveling Salesperson DP

For this week’s coding questions, we’ll implement Dynamic Programming algorithm for the
Traveling Salesperson problem you saw in lecture. There are two ways that you can access
the notebook and complete the problems:

1. On Datahub: click here and navigate to the hw08 folder.

2. On Local Machine: git clone (or if you already cloned it, git pull) from the
coding homework repo,

https://github.com/Berkeley-CS170/cs170-sp24-coding

and navigate to the hw08 folder. Refer to the README.md for local setup instructions.

Notes:

• Submission Instructions: Please download your completed submission .zip file and
submit it to the Gradescope assignment titled “Homework 8 Coding Portion”.

• Getting Help: Conceptual questions are always welcome on Edstem and office hours;
note that support for debugging help during OH will be limited. If you need debugging
help first try asking on the public Edstem threads. To ensure others can help you, make
sure to:

1. Describe the steps you’ve taken to debug the issue prior to posting on Ed.

2. Describe the specific error you’re running into.

3. Include a few small but nontrivial test cases, alongside both the output you ex-
pected to receive and your function’s actual output.

If staff tells you to make a private Ed post, make sure to include all of the above items
plus your full function implementation. If you don’t provide them, we will ask you to
provide them.

• Academic Honesty Guideline: We realize that code for some of the algorithms we ask
you to implement may be readily available online, but we strongly encourage you to not
directly copy code from these sources. Instead, try to refer to the resources mentioned
in the notebook and come up with code yourself. That being said, we do acknowledge
that there may not be many different ways to code up particular algorithms and that
your solution may be similar to other solutions available online.

6

https://datahub.berkeley.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2FBerkeley-CS170%2Fcs170-sp24-coding&urlpath=lab%2Ftree%2Fcs170-sp24-coding%2F&branch=main
https://github.com/Berkeley-CS170/cs170-sp24-coding

	Study Group
	Faster Longest Increasing Subsequence
	Max Independent Set Again
	Canonical Form LP
	Baker
	[Coding] Traveling Salesperson DP

