Creating Satellite Image Embeddings with Multi-Task Learning

Project Category: Computer Vision

Nandita Naik
nanditan
Department of Computer Science
Stanford University
nanditan@stanford.edu

1 Introduction

Satellite data is a rich source of information about our
planet. Previous analysis has used satellite images for de-
tecting deforestation [[1]], studying malaria outbreaks [2l],
and analyzing human impact on the oceans [3]. Yet train-
ing computer vision models on satellite data is resource
intensive and time consuming. Due to the curse of di-
mensionality, analyzing satellite images also requires large
amounts of labelled data [4]. Despite the rich representa-
tion of satellite data, the applications of learning from them
are limited because it is difficult to afford the resources
necessary to train satellite image-based models. There-
fore, reducing the dimensionality of satellite images while
preserving their meaning can help researchers efficiently
address vital global challenges.

Thus, we focus on the problem of representing satellite
images via embeddings. We hypothesize that similar fea-
tures of satellite imagery are relevant to many prediction
tasks. For instance, information about buildings might ap-
ply to measuring population density, home prices, and CO2
emissions. This motivates us to generate embeddings us-
ing multi-task learning, which has shown success in other
applications [5]. To the best of our knowledge, no prior
work has used multi-task learning for embedding satellite
images.

Our approach trains a deep neural network to perform mul-
tiple regression tasks on a satellite image simultaneously,
then uses the output of the last hidden layer as the em-
bedding. We use this trained model to take in a satellite
image and produce a lower-dimensional embedding. We
evaluate our embeddings based on their performance when
used to train linear regression models for unseen tasks.
We also demonstrate that our model can transfer its learn-
ing to previously unseen tasks, and our results on unseen
tasks show an improvement over MOSAIKS, the current
state of the art approach for satellite image embeddings [6]].
Specifically, for predicting population density, with the
same amount of embedding dimensions, we improve MO-
SAIKS’ R? score by 16%, and for predicting nightlights,
we improve MOSAIKS’ R? score by 21%.
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Our key contributions include: (1) a novel method for gen-
erating satellite image embeddings using multi-task learn-
ing, (2) an exploration of the embeddings we’ve generated,
and (3) a comparison of our methods and performance to
prior work.

2 Related Work

2.1 Satellite Image Embeddings

Previous satellite image embeddings use unsupervised ap-
proaches. For instance, Tile2Vec (2019) trains a CNN to
embed image tiles such that spatially close tiles are close
in the embedding space [7]. One advantage of this ap-
proach is that it requires no labels and is task independent.
One disadvantage is that it uses a large, computationally-
expensive CNN. RegionEncoder (2019) is an unsupervised
autoencoder that learns multimodal embeddings from satel-
lite images combined with other data about the region
[4]. This approach yields excellent results, outperforming
Tile2Vec on some regression tasks. However, their mul-
timodal embeddings require other data in addition to the
images, and this data is not available everywhere, making
it a less general approach.

MOSAIKS (2021) is a set of task-independent satellite
image embeddings that can solve different prediction tasks
[6]. To construct the embeddings, the MOSAIKS team first
used a random kitchen sink approach where they extracted
random convolutional features (RCFs) from a training set.
Then to generate component ¢ of their embeddings for an
input image, they convolve RCF 7 over the image and av-
erage the results. The benefits of this approach is that is
that is highly efficient, and training is label-free. However,
the shallow architecture of the model can’t create features
representing complex functions of the input image, which
could be highly beneficial for some tasks.

The MOSAIKS unsupervised approach outperformed prior
work on embedding satellite images, including approaches
using large CNNs, and their technique is the current state
of the art. We compare our embeddings to MOSAIKS’
throughout our project, benchmarking our performance
against theirs. MOSAIKS makes their dataset publicly



available, which made this project feasible and allows us
to make direct comparisons with their approach.

2.2 Multi-Task Learning

Multi-task learning (MTL) solves multiple tasks simultane-
ously, utilizing inherent connections between related tasks
to create models that generalize well [8]], [S]. Training
on multiple tasks helps avoid over-fitting to a single task
[8]. The model also learns to implicitly prioritize the fea-
tures that the tasks prefer [8]. Based on this reasoning,
we decided that multi-task learning could help our embed-
dings prioritize important features and generalize better to
unseen tasks.

Within computer vision, Garcia et al. (2019) used a super-
vised multi-task learning model trained on four art classifi-
cation tasks to create visual embeddings for automatic art
analysis. This approach achieved high performance com-
pared to baseline approaches [5]. We drew from this paper
the idea of applying multi-task learning to embeddings.

3 Dataset and Features

For our dataset, we build off the approach of MOSAIKS
in order to make meaningful comparisons [6]].

3.1 Geographic Sampling

The MOSAIKS team provides a set of 100,000 geographic
coordinates in the continental United States sampled uni-
formly at random, alongside labels for regression tasks
associated with the 1km x 1km square area centered at the
coordinates. From this dataset, we use a random subset
of 33,085 locations due to cost constraints on acquiring
and processing imagery. We use 13,085 locations for the
training phase for our multi-task models using an 80-10-
10 train-test-validation split. We use 20,000 locations to
evaluate our embeddings, also with an 80-10-10 train-test-
validation split.

3.2 Imagery

The inputs to our model for each location are satellite
images obtained from the Google Static Maps API [9].
Following the approach in MOSAIKS, we obtain 640 x
640 pixel images at zoom level 16, which correspond to
land areas of approximately 1 km?. These images have
standard RGB color channels and were geo-rectified and
preprocessed to eliminate clouds. This is an example im-
age from our dataset:

Because we finetune models starting from pretrained
weights, we must adopt the transformation associated with

the original training. In the case of the vision transformer
models used in this paper, this consists of reducing the
resolution to 242x242 and central cropping to 224x224.
The values are then scaled to [0,1] and normalized to have
mean [0.485, 0.456, 0.406] and standard deviations [0.229,
0.224, 0.225] across the three color channels [[10].

3.3 Prediction Tasks

MOSAIKS provides labels for six regression tasks (see
Table 1). We preprocess the labels for each task to have
a mean of zero and standard deviation one when they are
fed into our multitask model, in order to ensure that tasks
with higher numerical values are not weighted more heav-
ily. For linear regression, we predict the labels directly,
following the approach of the MOSAIKS paper.

Table 1: MOSAIKS Tasks
Task Unit

Forest Cover forest percentage

Elevation meters

Population Density | log(1 + people/km?)
Nighttime Lights log(1 + nanoWatts/cm? / sr)
Income $ per household

Road Length meters

In order to compete as fairly as possible against the unsu-
pervised approach in MOSAIKS, we randomly selected
four tasks (Elevation, Road Length, Income, Nighttime
Lights), as training tasks for use in training our multi-task
model. We reserve the remaining tasks for evaluating our
embeddings against MOSAIKS.

4 Methods

4.1 High-level Overview

We divide our project into three principal stages as shown
in figure 1.

In Stage 1: Train Multi-Task Model, we fine-tune a vi-
sion transformer on multiple regression tasks [11]. Our
model takes in images and outputs predictions on our train-
ing tasks. We modify the architecture of the vision trans-
former to generate embeddings, as discussed below.

In Stage 2: Embed Images, we generate image embed-
dings using our fine-tuned vision transformer. We do this
by running inference on an image and extracting the final
hidden layer output as our embedding. We embed a set
of evaluation images which is distinct from our training
images.

In Stage 3: Predict New Tasks, we divide our embed-
dings into a train, test, and validation set as described in
the dataset section. We then train a linear regression model
using our embeddings to predict an evaluation task’s labels.
Then, we test our linear regression model on our evaluation
task test labels.



Stage One: Train Multi-Task Model

Stage Two: Embed Images

Stage Three: Predict New Task(s)
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Figure 1: An overview of our embeddings pipeline

4.2 Task formulation

We formulate our multi-task learning problem as follows.
Given T learning tasks, with n data points, where the
dataset for the task ¢ is {a*, y*}_;, we want to optimize

T n
arg min Z Z A (f (235 00), 97),

t=1 i=1

where \! indicates the task weight for the ¢-th task, ¢; rep-
resents the loss function for the ¢-th task, and f(zf; w')
represents the prediction for the ¢-th « data point for task ¢,
where f is parameterized by w [5]]. In this paper, we take
A¢ = 1 and leave task weighting for future work. We also
use MSE as our loss function.

4.3 Model Architecture

To generate embeddings, we fine-tuned a vision trans-
former on our dataset. We use vision transformers, as these
models have demonstrated state of the art performance on
many computer vision tasks and have been shown to per-
form well on small and medium-sized datasets when they
are pre-trained on ImageNet [[L1]].

We specifically use the vision transformer architecture
VIT_B_16 as implemented in PyTorch and trained on the
IMAGENET1K_V1 dataset [[10]. We use the smallest
available architecture due to computation constraints and
our relatively small dataset.

The idea of a transformer first originated in NLP. It makes
use of attention, a mechanism where the model weights
different sections of the input given their learned relevance
[12]. Importantly, transformers process the whole input
at once. This allows for more parallelization and faster
training times. A vision transformer (ViT) is a transformer
adapted for use on an image [[11]. This architecture ex-
tracts patches of size 16 x 16 from the image, then feeds
those patches through a standard transformer encoder.

We modify the existing architecture slightly to create em-
beddings. To generate an embedding of dimension d, we
replace the final layer with a fully connected layer, which
takes in the same number of inputs as the original final
layer, and has output dimension d. Then, we add a ReLU
layer, the result of which is our embedding. Finally, we

add another fully connected layer, which takes in the d out-
puts of the ReLU layer and outputs a feature per regression
task.

4.4 Baseline method

We used the pre-trained vision transformer VIT_L_16,
without any fine-tuning on predicting tasks from satellite
images, to establish a baseline performance. We use the
larger model for this task as it results in more output fea-
tures and thus a higher dimensional embedding.

4.5 Evaluation Metrics

Our goal is to measure how well the embeddings perform

on predicting a previously unseen task. We use perfor-

mance on the linear regression tasks as a proxy for evalu-
. . 2

ating our generated embeddings. We use R“ error, com-
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puted as 1 — , where our data and labels are

5 Results and Discussion

5.1 Multi-Task Embeddings Results

We used Adam [[13] optimization and weight decay to
reduce overfitting. For hyperparameter selection, we hand-
tuned the model and found that a learning rate value of
0.00001, a weight decay value of 0.01, and a batch size
of 64 gave the best results. We train for five epochs, after
which we observe the validation MSE ceases to decline.

Because we have far fewer training examples for linear re-
gression than MOSAIKS does (16, 000 vs 60, 000 images)
we focus on training lower 1024 dimensional embeddings
than the 8192 dimensional embeddings that MOSAIKS
found to be optimal for their approach. However, we do
evaluate both our embeddings and MOSAIKS’ with 4096
dimensions.

In setting the ridge regression parameter A\, we hyper-
parameter tune to optimize MOSAIKS’ performance on
the validation set and found that the optimal value for MO-
SAIKS at both dims 1024 and 4096 was 2. We then use this
hyperparameter for all training, making it strictly harder
for our results to compare favorably with MOSAIKS.



The results for our embeddings (MTL w/All Four) and MO-
SAIKS are summarized in Figure X. We observe that our
primary approach performs better than MOSAIKS and our
baseline model. Table 2 contains plots of our predictions
alongside MOSAIKS.

The baseline model is surprisingly strong, outperforming
MOSAIKS, and approaching our performance. This is
likely the result of it using a larger vision transformer than
we were able to finetune. We believe that finetuning on
this architecture could yield better results in the future.

5.2 Ablation Study Results

What contribution is each task making to the final trained
model? We conducted an ablation study to measure the
effect of each train task. To do this, we trained our multi-
task model on four train tasks, then removed each task one
by one, and evaluated performance.

Table 2: R? on test tasks for various embeddings.

“ Tasks Dim Population R  Nightlights R? H
MTL w/All Four 1024 0.786 0.775
MTL w/o Elevation 1024 0.769 0.774
MTL w/o Income 1024 0.763 0.759
MTL w/o Roadlength 1024 0.768 0.749
MTL w/o Treecover 1024 0.766 0.778
MOSAIKS 1024 0.673 0.638
ViT Baseline 1024 0.739 0.743
MOSAIKS 4096 0.698 0.668
MTL w/All Four 4096 0.736 0.755

Our results show an improvement over MOSAIKS in all
models, with the four-tasks model achieving an improve-
ment of 16% on nightlights, and 21% on population. The
model trained on all four tasks had the best performance,
suggesting that our multi-task approach is successful. Our
model also does not appear to overly rely on any single
task, since removing a task did not cause our performance
to dip by a significant amount. Interestingly, we see that
removing elevation had a significant effect on the popula-
tion task, while not affecting the nightlights task too much.
Removing roads, however, caused the most significant dip
in both our nightlights and population performance. This
makes sense intuitively as an area with more roads is also
more likely to be urban, which affects population and light
pollution.

In the following plots, we compare the predictions from
our best-performing model (MTL with all tasks, dim 1024)
against MOSAIKS’ with dim 1024. We plot y = x, for
reference. The MOSAIKS results are noisier and contain
more outliers.
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5.3 Embedding Exploration Results

What did the embeddings learn? We conducted experi-
ments to explore the latent space created by our embed-
dings. We also conduct the same experiments on MO-
SAIKS’ embeddings, contributing analysis which was not
present in the original paper [6].

5.3.1 Distance in embeddings, distance in space

Tile2Vec [7] assumes that satellite image tiles that are close
geographically will also encode similar semantic meaning.
Is this assumption reflected in our embeddings? In MO-
SAIKS’? To explore these questions, we randomly sample
5,000 pairs of locations and plot their geographic distance
against their distance in the embedding space (using the
4096 dimensional variants). We scale the data so that both
geographic and embedded distance have mean zero and
standard deviation one.

We find the correlation between real distance and embed-
ded distance is weak but positive. The correlation coeffi-
cient is 0.313 for our Multi-Task approach and 0.085 for
MOSAIKS. These results are not surprising, since there
are disparate areas of the United States which appear simi-
lar (eg. urban areas) and nearby areas that appear different
(eg. parks in cities). We plot the results of this experiment
below:

Multi-Task Distance Comparison MOSAIKS Distance Comparison

Embedded Distance
Embedded Distance




From Desert to Forest: Multi-Task (top) vs MOSAIKS (bottom)

Figure 2: Interpolation plots.

5.3.2 PCA on embeddings

We wanted to explore the extent to which embeddings
could be reduced in dimension while retaining informa-
tion. To this end, we apply PCA to both our embeddings
and MOSAIKS’. We ran PCA taking the top 50 principal
components and plot the variance explained by the i-th
principal component.
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We observe that MOSAIKS has much more variance ex-
plained by its top few principal components, indicating
its embeddings may contain less information. This could
be because its unsupervised approach does not penalize
including components highly correlated with existing com-
ponents. In contrast, our supervised embeddings have a
loss function which penalizes the model for having useless
features. This distinction could help explain why MO-
SAIKS performs worse than our embeddings.

5.3.3 Moving through the embedding space

We replicate the latent space exploration used by
Tile2Vec [[7]] to explore our embeddings. We sample five
uniformly spaced points on the line between the embed-
dings of two images and find the four nearest neighbors.
Figure 2 shows the results of interpolating between a desert
image and a forest image in this way. Qualitatively, MO-
SAIKS has a smoother transition in hue, but our clusters
are more meaningfully similar.

5.3.4 t-SNE Visualization

To visualize the embeddings, we used t-SNE [14] which
uses nonlinear dimensionality reduction to visualize high-
dimensional data. We visualized the embeddings trained
on all four train tasks, with dimension 1024.
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In our t-SNE plots, coloring is based on binning labels for
elevation (a train task) and nightlights (a test task). We
observe our embeddings differentiate locations based on
tasks more distinctly than MOSAIKS’. It is promising that
this occurs for nightlights, suggesting the structure of our
embeddings generalize to unseen tasks.

6 Conclusion/Future Work

In conclusion, we developed a multi-task learning based
method for creating satellite image embeddings that uses
knowledge gained from multiple tasks to generalize well to
previously unseen tasks. Our methods show improvements
of 16% and 21% over MOSAIKS on the test tasks of popu-
lation density and nightlights density. We also demonstrate
that our embeddings preserve meaning.

In future work, we’d like to use more data to better train
and evaluate our embeddings. We also want to explore
satellite embeddings beyond solving regression tasks. For
instance, could studying differences in the embedding of
the same location over time give insight into changes on
our planet? Through embedding satellite images, we hope
to work towards a greater understanding of our planet.



7 Contributions

Bay wrote the data loader and implemented an initial
pipeline. Nandita experimented with a variety of archi-
tectures and worked to tune hyperparameters, and ran the
ablation experiments. We both worked together to design
and implement a variety of experiments to explore our
embeddings and write up and interpret all of our results.
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