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BT Outline

* Deep Learning — roughly what is it?
* Why is it such a big deal (now)?
* Should | use deep learning?
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. Linear Regression
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~ The most basic “network”

Perceptron: online linear regression
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"~ Logistic Regressior
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_most basic network
y=1itw-x > 7 else

e Activation function \

* Non —linear behavior Threshold/activation
* Perceptron algorithm value
* Single-layer perceptron
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-st basic network

y=1itw-x > 7 elsel
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_)st basic network

y=1itw-x > 7 elsel

just a logistic regression
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_)st basic network

y=1itw- -2 > 7 else

X 2 h

And another logistic regression
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_ost basic network

y=1itw-x > 7 elsel

And another logistic regression
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_nost basic network

ix
X
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y=1itw-x > 7 elsel

)

Ve Neuron
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Hidden State
New feature vector
Exploring different dimension of input
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4/18/22

Same idea, illustrated a bit
differently...
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_e most basic network
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* Outputs
@ @ Possible classes

e Hidden units
* One or more

hidden
layers/levels

* [|nput feature
representation
embedding
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- most basic network

e Can have arbitrarily many

e Training more units requires
more data

e In theory, “deeper” is not
better than “wider”. In
practice it seems it often is.
We aren’t sure why yet...
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_e most basic network

w00 (w01
h00 ‘hO'l ‘hoz X wi0o |wil1l — h1l0 ‘hll

w20 w21

h10 = wOOhOO + w10h01 + w20h02

h1l =w01h00 + wl1h01 + w21h02
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* Ho do we find the best model?

dloss
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BN Training

Loss Functions?
« Can be any differentiable function f(pred, true) = L
« Commonly MSE if true is continuous

« Commonly Cross Entropy if true is categorical

X W Backpropagation)
backprop
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BN Getting “Deep”

y=1itw- -2 > 7 else

A=

1

_
2 y

* New feature vectors
 Any correction that may improve the performance of the
model
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Many nonlinear parameters =
High flexibility = High complexity
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Nothing new, nothing fancy

* Neural Networks have been around for a long
time (1980’s)

* A vanilla Multi Layer Perceptron (MLP) can
theoretically approximate any function
(“universal approximator”)

e Note: “can” = “do”



What changed recently?

Deep learning became viable for a few reasons....

* Backpropagation allows building deep
networks and actually train them

e GPUs: and we can train them fast

* Data: and we can train on enough data that
they actually converge to something useful



-Nhy are they so much better, though?

e “lts how the brain works.”

— —> NO!

 End-to-end training—optimize directly for the thing you
care about

 Dense/denoised representations—similar inputs get
similar predictions

* Uniform representations across sub-disciplines of Al (i.e.
vision, language, sensor inputs)

— “its all just vectors anyway”
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* You already have linear regression, naive bayes,
logistic regression, svm...

* Now you have neural nets too!
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_Itilayer Perceptron

4/18/22

“Feed Forward Net”

“Fully Connected Layer”
Hidden

Input .
. Output

Arbitrary, non-linear combinations of input features.

No prior on the structure of those features.
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Feature maps

Convolutions Subsampling Fully connected

Used for vision. Assumes spatial structure to the data.
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Used for language (and other things).
Assumes linear/temporal structure to the data.
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S0 why haven't NNs solved everything?

Mostly require (massive!) supervised learning. Better use of
deep RL/unsupervised pretraining?

End-to-end-training hurts generalizability. Inductive biases on
the hypothesis space?

The big reason: its really really hard to formulate most
problems as ML problems



Should | use deep learning?

?
Do you have a lot of data: Yes, so much

y ‘ \ data.
Not a ton, but a

decent amount (1000s) Then, yeah,
\ probably.

Cool, trying that then.

No

Sure, might as
well. 1

It will generally work
well but you will have
to trust the result.

Okay, have fun. Try a
basic logistic
regression too,
though. They often
work.




Transfer Learning

a.k.a. “Pretraining”,
“Representation Learning”...

* Train a model to do some task T1 (for which you have a lot
of data)

* Let the model converge. Now your hidden states contain
whatever features were good for T1

* Maybe these features are good for some other task T2 too?
Maybe you can now do T2 with less training?



~ Word Embeddings
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~ Representation Learning
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~ Representation Learning

For unsupervised learning:
* Learninput embedding
* Learn network coefficients




~ Representation Learning
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Self- supervised learning

* Predicting the future “one
. step at a time”
 Language modeling,
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~ Word Embeddings

one hot encoding, i.e.: the word
“congress”

predict one hot encoding of next word,
l.e.:the word “stagnhated”
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Can be used to denote parameter
Embedding Matrix sharing over similar words.
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. Sentence Embeddings

the car

<s> the car S not
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- Resources

* Simply neural net classifier for images:

https://pytorch.org/tutorials/beginner/blitz/cif
arl0 tutorial.html

* Simple recurrent network for sequence
modeling:

https://pytorch.org/tutorials/beginner/nlp/seq

uence models tutorial.html
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https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

