

CS1951A: Data Science

Lecture 19: Deep learning

Lorenzo De Stefani Spring 2022

Outline

- Deep Learning roughly what is it?
- Why is it such a big deal (now)?
- Should I use deep learning?

Linear Regression

Linear Regression

$$\vec{y} = \vec{w}X + b$$

Perceptron: online linear regression

Logistic Regression

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

- Activation function
- Non –linear behavior
- Perceptron algorithm
- Single-layer perceptron

Threshold/activation value

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

just a logistic regression

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

And another logistic regression

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

And another logistic regression

- Hidden State
- New feature vector
- Exploring different dimension of input

Same idea, illustrated a bit differently...

- Can have arbitrarily many
- Training more units requires more data
- In theory, "deeper" is not better than "wider". In practice it seems it often is.
 We aren't sure why yet...

h10 = w00h00 + w10h01 + w20h02

h11 = w01h00 + w11h01 + w21h02

Training

Training

$$y' = W_2 \cdot (W_1 \cdot \vec{x})$$

$$x = y' = W_2 \cdot (W_1 \cdot \vec{x})$$

$$x = y' = y'$$

$$\vec{x} = y' = y'$$

$$y' = W_2 \cdot (W_1 \cdot \vec{x})$$

$$W_2 \cdot (W_1 \cdot \vec{x})$$

$$y' = W_2 \cdot (W_1 \cdot \vec{x})$$

$$W_2 \cdot (W_1 \cdot \vec{x})$$

$$g'(x)$$

- Ho do we find the best model?
- $\frac{\partial loss}{\partial w}$?
- $g'(\vec{x}) = W_1 \cdot \vec{x}$
- $f'(\vec{x}) = W_2 g'(\vec{x})$
- $\bullet \quad \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$

$$\frac{\partial g'}{\partial x}$$

Backpropagation backprop

Training

Loss Functions?

- Can be any differentiable function f(pred, true) = L
- Commonly MSE if true is continuous
- Commonly Cross Entropy if true is categorical

W Backpropagation)
backprop

Getting "Deep"

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

- New feature vectors
- Any correction that may improve the performance of the model

Complexity

Many nonlinear parameters = High flexibility = High complexity

Nothing new, nothing fancy

- Neural Networks have been around for a long time (1980's)
- A vanilla Multi Layer Perceptron (MLP) can theoretically approximate any function ("universal approximator")
- Note: "can" != "do"

What changed recently?

Deep learning became viable for a few reasons....

- Backpropagation allows building deep networks and actually train them
- GPUs: and we can train them fast
- Data: and we can train on enough data that they actually converge to something useful

Why are they so much better, though?

- "Its how the brain works."
 - -> NO!
- End-to-end training—optimize directly for the thing you care about
- Dense/denoised representations—similar inputs get similar predictions
- Uniform representations across sub-disciplines of AI (i.e. vision, language, sensor inputs)
 - "its all just vectors anyway"

NNs as classifiers

- You already have linear regression, naive bayes, logistic regression, svm...
- Now you have neural nets too!

Multilayer Perceptron

"Feed Forward Net"

"Fully Connected Layer"

Arbitrary, non-linear combinations of input features. No prior on the structure of those features.

Convolutional Neural Net (CNN)

Used for vision. Assumes spatial structure to the data.

Recurrent Neural Net (RNN)

Used for language (and other things). Assumes linear/temporal structure to the data.

So why haven't NNs solved everything?

- Mostly require (massive!) supervised learning. Better use of deep RL/unsupervised pretraining?
- End-to-end-training hurts generalizability. Inductive biases on the hypothesis space?
- The <u>big</u> reason: its really really hard to formulate most problems as ML problems

Should I use deep learning?

Transfer Learning

a.k.a. "Pretraining", "Representation Learning"...

- Train a model to do some task T1 (for which you have a lot of data)
- Let the model converge. Now your hidden states contain whatever features were good for T1
- Maybe these features are good for some other task T2 too?
 Maybe you can now do T2 with less training?

Word Embeddings

Representation Learning

Representation Learning

Word Embeddings

one hot encoding, i.e.: the word

Sentence Embeddings h**6**0 $h g_1$ 102

<S>

the

is

car

blue

not

Resources

- Simply neural net classifier for images: https://pytorch.org/tutorials/beginner/blitz/cif ar10 tutorial.html
- Simple recurrent network for sequence modeling:

https://pytorch.org/tutorials/beginner/nlp/sequence models tutorial.html