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What is the most popular topic at CVPR?

Publication h5-index h5-median
1. Nature 467 707
2. The New England Journal of Medicine 439 876
3. Science 424 665

IEEE/CVF Conference on Computer Vision and

Pattern Recognition

5. The Lancet 368 688
6. Nature Communications 349 456
7. Advanced Materials 326 415
8. Cell 316 503
9. Neural Information Processing Systems 309 503
10. International Conference on Learning 303 563

Representations

h5-index: largest number h such that h articles published in the last 5 years have at least h citations each. https://scholar.google.com/citations?view op=top venues&hl=en



https://scholar.google.com/citations?view_op=top_venues&hl=en

CVP R 2023 by the Numbers

Selecting a category below changes the paper list on the right.
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3D from multi-view and sensors

Image and video synthesis and generation

Humans: Face, body, pose, gesture, movement
Transfer, meta, low-shot, continual, or long-tail learning
Recognition: Categorization, detection, retrieval
Vision, language, and reasoning

Low-level vision

Segmentation, grouping and shape analysis

Deep learning architectures and techniques
Multi-modal learning

3D from single images

Medical and biological vision, cell microscopy

Video: Action and event understanding

Autonomous driving

Self-supervised or unsupervised representation learning
Datasets and evaluation

Scene analysis and understanding

Adversarial attack and defense

Efficient and scalable vision

Computational imaging

Video: Low-level analysis, motion, and tracking

Vision applications and systems

Vision + graphics

Robotics

Transparency, fairness, accountability, privacy, ethics in vision
Explainable computer vision

Embodied vision: Active agents, simulation

Document analysis and understanding

Machine learning (other than deep learning)
Physics-based vision and shape-from-X
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3D from multi-view and sensors

B Award Candidate

33

76

120

143

330

357

Il Highlight B Paper

NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera
Localization

Object Pose Estimation with Statistical Guarantees: Conformal Keypoint
Detection and Geometric Uncertainty Propagation

NeuralUDF: Learning Unsigned Distance Fields for Multi-view Reconstruction of
Surfaces with Arbitrary Topologies

NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction from
Multi-view Images

Looking Through the Glass: Neural Surface Reconstruction Against High
Specular Reflections

Multi-View Azimuth Stereo via Tangent Space Consistency

https://cvpr2023.thecvf.com/Conferences/2023/AcceptedPapers



https://cvpr2023.thecvf.com/Conferences/2023/AcceptedPapers

Why do we care about Geometry?

Self-driving cars: navigation, collision avoidance
Robots: navigation, manipulation

Graphics & AR/VR: augment or generate images
Photogrammetry (architecture, surveys)

Pattern Recognition (web, medical imaging, etc)



Geometry is more useful now than ever!
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https://github.com/TRI-ML/packnet-sfm

Overview of Geometric Vision in CS131

Geometric Image Formation
The Pinhole Camera model + Calibration
Multi-view Geometry

Structure-from-Motion

Reference textbooks: Szeliski, Hartley & Zisserman to go deeper
Slides credits: Fei-Fei Li, JC Niebles, J. Wu, K. Kitani, S. Lazebnik, S. Seitz, D. Fouhey, J. Johnson



http://szeliski.org/Book/
https://www.robots.ox.ac.uk/~vgg/hzbook/

What will we learn today?

Why Geometric Vision Matters
Geometric Primitives in 2D & 3D

2D & 3D Transformations



General Advice / Observations

Fundamentals: need to (eventually) feel easy
Try to do the math in parallel live In class!
If not grokking this: practice later, ask on Ed, OH

Lots of good (hard?) exercises in Szeliski's book



What will we learn today?

Why Geometric Vision Matters



Images are

2D projections of
the 3D world




Simplified Image Formation

light {:2

SOurce

Figure: R. Szeliski



Can we understand
the 3D world
from 2D images?






CV

IS an 1ll-posed inverse problem
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Brief History of Geometric Vision

e 2020-: geometry + learning

e 2010s: deep learning

e 2000s: local features, birth of benchmarks

* 1990s: digital camera, 3D reconstruction

 1980s: epipolar geometry (stereo) [Longuet-Higgins]



Brief History of Geometric Vision

 1860s: first Computer Vision startup? [Willeme]
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10 E, Morin and E. Rovins, paritographic studio (from Le
Monde illustré, December 17, 1864) Source: P. Sturm




Brief History of Geometric Vision

 1860s: first Computer Vision startup? [Willeme]
 1850s: birth of photogrammetry [Laussedat]

e 1840s: panoramic photography

T ¥

®

7
wwy,!v,,;‘,)a..;.,’

Puchberger 1843

Cylindrograph
Moéssard 1884

“Cloud camera”, 1907? Source: P. Sturm



Brief History of Geometric Vision

 1860s: first Computer Vision startup? [Willeme]
 1850s: birth of photogrammetry [Laussedat]
e 1840s: panoramic photography

+ 1822-39: birth of photography [Niépce, Daguerre] e s mo et 1925
« 1773: general 3-point pose estimation [Lagrange]
« 1715: basic intrinsic calibration (pre-photography!) [Taylor]

* 1700’s: topographic mapping from perspective drawings
[Beautemps-Beaupré, Kappeler]

Source: P. Sturm



Brief History of Geometric Vision

e 15t century: start of mathematical treatment of 3D, first AR app?

Augmented reality invented by Filippo Brunelleschi (1377-1446)7?

Tavoletta prospettica di Brunelleschi

Source: P. Sturm


https://www.youtube.com/watch?v=G2BCdA23Kpg

Brief History of Geometric Vision

® China: 5th century BC
®* Greece: 4th century BC
®* Egypt: 11th century

Throughout Europe: from 11th century onwards

First mention ... First camera?

Solis aﬂ:@uim Aano Chri 51€I54-.1-_
Die 24 g‘mum Lopani~ ’

AR SR DAL

Chinese philosopher Mozi
(470 to 390 B() (384 to 322 BQ)

Greek philosopher Aristotle

5th century BC: principles of pinhole camera, a.k.a. camera obscura

Source: P. Sturm



Abelardomorell.com




What will we learn today?

Geometric Primitives in 2D & 3D



Points

2D points: X = (z,¥y) € R?  or column vector x =
3D points: x = (z,y,2) € R?  (often noted X or P)

Homogeneous coordinates: append a 1

X = (z,y,1) X = (z,y,%,1)

Why?




Everything is easier in Projective Space

2D Lines:

Representation: | = (a, b, ¢)
—quation: ax +by+c =0
n homogeneous coordinates: x'1 =0

eneral idea: homogenous coordinates

General idea: homogenous coordinates
unlock the full power of linear algebral




Homogeneous coordinates in 2D

2D Projective Space: P? = R> — (0,0, 0)

* heterogeneous - homogeneous

* homogeneous - heterogeneous

;

(same story in 3D with P?)

B

|

T
Y
1

z/w }

y/w

* points differing only by scale are equivalent: (x,y,w)~ A (x,y,w)

~

~

x = (z,y,w) =w(x,y,1) = wx.



Everything is easier in Projective Space

2

D Lines:

x'1=0,vX = (x,y,w) € P? \

| = (i, 1y, d) = (i, d) with ||| = 1 =
D planes: samel

X'm =0,vX = (x,y,z,w) € P3

m = (e, iy, 1z, d) = (8, d) with ||| = 1




Linesin 3D

Two-point parametrization: 24/
/ K/p/
r=(1-ANp+AXa r=up+2q /F(l-K)pﬂq

q
. . X y
Two-plane parametrization: W

coordinates (xq, Vo) & (x1,y1) of Intersection

with planes at z = 0,1 (or other planes)



Cross-product quick reminder

axb=|al|b|sin(f) n

axb=lalb=| a3 0 —a;|]|b




Benefits of Homogeneous Coordinates

 Line — Point duality:
* line between two 2D points: 1 = X; X Xo

e intersection of two 2D lines: X =17 X 1

* Representation of Infinity:

* points at infinity: (x,y,0); line at infinity: (0,0,1)
» Parallel & vertical lines are easy (take-home: intersect //)

e Makes 2D & 3D transformations linear!



Questions?



What will we learn today?

2D & 3D Transformations



The camera as a coordinate transformation

A camera is a mapping 3D object -
3D to 2D transform
from: \ (camera)
the 3D world

2D image . D . 2D image

—

to:
2D to 2D transform

(image warping)

a 2D image

Source: K. Kitani



Cameras and objects can move!

p=XYZ1)

(a) (b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point co-
ordinate (X,Y, Z, 1) and the 2D projected point (xz,y, 1,d); (b) planar homography induced

by points all lying on a common plane 1y - p + co = 0.

Figure: R. Szeliski



2D Transformations Zoo

R
yA / 31m11ar1ty projective — |
translation
P 4
\
Euchdean afﬁne >
S~— X

Figure: R. Szeliski



Transformation = Matrix Multiplication

Scal Flip across y
0 -1 0
M- M-l T
Rotat Flip acros g
cosf —sinf -1 0
M_[sint? 9] M_[o —1]
Sh Identity
1 1 0
M=, 7 M=o 7




Scaling

S, 0O " T|  |Szx
_ 0 Sy | Y SyY
A p p’
)/ p’
A E‘. 2
,P 7

Slide: JC. Niebles



Rotation

rotation
around the
origin

-“‘

.
.
.
I“‘
.
.
.

' = zcosf —ysinfh

y = zsinf +ycosb

or in matrix form:

vl

cos 6
sin 6

—sinf
cos 6

Rotation matrix:
] * |nverse is transpose

Orthonormal

Slide: K. Kitani

A 4

|

x
Y

|

R-R'=R"-R=1
det(R) =1



2D Translation

R P x' =x+t,

L P t I ___

S V=Y
<6 As a matrix?

Slide: JC. Niebles



2D Translation with homogeneous coordinates

_x_
_ x]_) y
_____ P’ P=ly ]
R — iy
' t = tx]—> tx
! ! - t y
X t Y '1'
p'=Tp
X + tx] 1 0 ¢t,]rx
, - 1 ty.
p > |ytty|=10 1 ¢, J’—[O 1]P—TP
1 0 0 111

Slide: JC. Niebles



2D Transformations with homogeneous coordinates

No change

0
0

10
|01

©,1)

0,0)

Rotate about origin

cos® -sinB O
sin@ cosB 0

(—sin 6,

CoS e E

|

Translate

10
0 1

!

0

1

|

Shear in x direction

1 tand O
0

Scale about origin
WO0 O
OHO

Shear in y direction

1 00
[tamp1 O]

Figure: Wikipedia



Questions?



2D Transformations Zoo

R
yA / 31m11ar1ty projective — |
translation
P 4
\
Euchdean afﬁne >
S~— X

Figure: R. Szeliski



Euclidean / Rigid

Euclidean (rigid):
rotation + translation

SE(2): Special Euclidean group
Important in robotics:
describes poses on plane

-cosﬁ -sinf tz ]
sinf cos6 8

0 0 1

How many degrees of freedom?




Similarity

Similarity: a1 -
Scaling
+ rotation b a I
+ translation Y
0 0 1




Affine transformation

Affine transformations are combinations of

e arbitrary (4-DOF) linear transformations; and

o N &
e S
\< 1

'\<-
I
‘o a o

 translations

Properties of affine transformations:
e origin does not necessarily map to origin

* lines map to lines —_

* parallel lines map to parallel lines

* ratios are preserved

Source: K. Kitani



Projective transformation (homography)

Projective transformations are combinations of X'

X a b cllx]

. o "'=|d e f
 affine transformations; and Y %
. w' g h il|lw
 projective warps L1 L 1L

How many degrees of freedom?
Properties of projective transformations:

e origin does not necessarily map to origin

* lines map to lines —_
* parallel lines do not necessarily map to parallel lines

e ratios are not necessarily preserved

Source: K. Kitani



Projective transformation (homography)

Projective transformations are combinations of Bl "y ]

X a b c|

. o "'=|d e f
 affine transformations; and Y %
. w' g h il|lw
 projective warps 1L 1L

8 DOF: vectors (and therefore
Properties of projective transformations: matrices) are defined up to scale

e origin does not necessarily map to origin

* lines map to lines —_
* parallel lines do not necessarily map to parallel lines

e ratios are not necessarily preserved

Source: K. Kitani



Questions?



Composing Transformations

Transformations = Matrices => Composition by Multiplication!
p' = RyR.Sp
In the example above, the result I1s equivalent to
p' = Ry(R1(Sp))
Equivalent to multiply the matrices into single transformation matrix:

p' = (R;R.S)p

Order Matters! Transformations from right to left.



Scaling & Translating !'= Translating & Scaling

1 0 ¢]s, O Ofrpx s, 0 trx S,X + t,
p" =TSp = [0 1 ty] lo s, 0] H =10 s, t, H =S,y Tty
0 0 110 0 11t1 0 0 111 1
s, 0 O][1 0 ¢.]rx S, 0 s.t,]r1x S, X + S,t,
p'"" =8STp =10 S, 0] lO 1 ty] H =10 Sy Syt H = |5,y +s,t,
0 0 110 0 1111 0o 0 111 1




Scaling + Rotation + Translation

=(TRS)p
cosf —sinf@ Of[s, 0 O]px
p' =TRSp = O 1 smH cosH 00 s, O [)’]
0 O 1 1110 0 11t1

cosf —siné O O
sm 6 cos 6

-5 46 ;’E] =rif | F]

1

This is the form of the
general-purpose
transformation matrix



2D Transforms = Matrix Multiplication

Transformation Matrix #DoF Preserves Icon
translation [I t] 2 orientation
2x3
rigid (Buclidean)  [R. ] 3 lengths Q
2x3
similarity [sR t] 4 angles O
2x3
affine {A] - 6 parallelism D
X
projective [ﬁ] 8 straight lines G
3%x3

Table 2.1 Hierarchy of 2D coordinate transformations, listing the transformation name, its

matrix form, the number of degrees of freedom, what geometric properties it preserves, and

a mnemonic icon. Each transformation also preserves the properties listed in the rows below

it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2 X

3 matrices are extended with a third [0 1] row to form a full 3 x 3 matrix for homogeneous

coordinate transformations.

Figure: R. Szeliski



Questions?



3D Transforms = Matrix Multiplication

Transformation Matrix #DoF Preserves Icon
translation [I t} 3 orientation
3x4
rigid (Buclidean)  [R. ] .6 lenghs O
3 X
similarity [SR t] () angles Q
3x4
affine [A} 12 parallelism E
3x4
projective [I:I] 15 straight lines lj
4x4

Table 2.2  Hierarchy of 3D coordinate transformations. Each transformation also pre-

serves the properties listed in the rows below it, i.e., similarity preserves not only angles but

also parallelism and straight lines. The 3 x 4 matrices are extended with a fourth [0T 1]

row to form a full 4 x 4 matrix for homogeneous coordinate transformations. The mnemonic

icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Figure: R. Szeliski



3D Rotations: SO(3) representations

Figure: Wikipedia

Euler Angles: yaw, pitch, roll (a,B,7)
- compose R(Y)R(B)R(a) (order, axes!)

Axis-angle: (n,0) or w = 0n
—> matrix via Rodrigues formula (simple for small 6)
R(D,0) =I+sinf[f], + (1 —cosf)[A]3 ~ 1+ [ha]y

\%
. . —t— . 9 ~ 6
Unit Quaternions. q = (x,y,z,w) = (sm; n, cos 5), lg]| = 1
—> continuous, nice algebraic properties, matrix via Rodrigues
[1—2(y2—|—22) 2(zy — 2w) 2(xz + yw) -l

R(q) = { 20xy +zw) 1-22%+2%)  2yz—aw) J

S
llall g3,
\

\i
P
.......

2(xz — yw) 2(yz +zw) 1 —2(2? +9?)
See Szeliski 2.1.3 for more details



Questions?



What did we learn today?

Geometry is essential to Computer Vision!

Geometric Primitives in 2D & 3D

homogeneous coordinates, points, lines, and planes in 2D & 3D

2D & 3D Transformations

scaling, translation, rotation, rigid, similarity, affine, homography

Next Lecture: putting this in “perspective’...



Appendix



Intersecting Parallel Lines



Intersecting Parallel Lines

X X
X~(by,—aq,0)



2D planar transformations

Polar coordinates...
X =T cos ()

y =1 sin (@)
X =r1cos (¢ +0)
, [x’] y’ =r sin (¢ + 0)
T = )
- Trigonometric Identity...
B rotation X" =1 cos() cos(0) - r sin(¢) sin(0)
7’ around the y' =1 sin(¢) cos(0) + r cos(¢) sin(0)
origin
T Substitute...
\ Fo..o = X =x cos(0) - y sin(0)
R U Y y
f0 L y’ = x sin(0) + y cos(8)
................... ©

XL



