CS131: Computer Vision: Foundations and Applications

Geometric Primitives \& Transformations

Juan Carlos Niebles and Adrien Gaidon

Stanford University

What is the most popular topic at CVPR?

	Publication	$\underline{\text { h5-index }}$	$\underline{\text { h5-median }}$
1.	Nature	$\underline{467}$	707
2.	The New England Journal of Medicine	$\underline{439}$	876
3.	Science	$\underline{424}$	665
4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	$\underline{422}$	681
5.	The Lancet	$\underline{368}$	688
6.	Nature Communications	$\underline{349}$	456
7.	Advanced Materials	$\underline{326}$	415
8.	Cell	$\underline{316}$	503
9.	Neural Information Processing Systems	$\underline{309}$	503
10.	International Conference on Learning	$\underline{303}$	563

CVPR 2023 bythe Uumbers

Selecting a category below changes the paper list on the right.
Selec

- All

Award Candidate
Highlight
(i)

PICK INSTITUTIONS

Paper
SELECT \downarrow Top 10 overall by number of authors
3D from multi-view and sensors
Image and video synthesis and generation
Humans: Face, body, pose, gesture, movement
Transfer, meta, low-shot, continual, or long-tail learning
Recognition: Categorization, detection, retrieval
Vision, language, and reasoning
Low-level vision
Segmentation, grouping and shape analysis
Deep learning architectures and techniques
Multi-modal learning
3D from single images
Medical and biological vision, cell microscopy
Video: Action and event understanding
4 Autonomous driving
15 Self-supervised or unsupervised representation learning
16 Datasets and evaluation
17 Scene analysis and understanding
18 Adversarial attack and defense
19 Efficient and scalable vision
20 Computational imaging
21 Video: Low-level analysis, motion, and tracking
22 Vision applications and systems
23 Vision + graphics
24 Robotics
25 Transparency, fairness, accountability, privacy, ethics in vision
26 Explainable computer vision
27 Embodied vision: Active agents, simulation
28 Document analysis and understanding
29 Machine learning (other than deep learning)
$30 \quad$ Physics-based vision and shape-from-X

Why do we care about Geometry?

Self-driving cars: navigation, collision avoidance
Robots: navigation, manipulation
Graphics \& AR/VR: augment or generate images
Photogrammetry (architecture, surveys)
Pattern Recognition (web, medical imaging, etc)

Geometry is more useful now than ever!

PackNet

Overview of Geometric Vision in CS131

Geometric Image Formation
The Pinhole Camera model + Calibration
Multi-view Geometry
Structure-from-Motion

Reference textbooks: Szeliski, Hartley \& Zisserman to go deeper
Slides credits: Fei-Fei Li, JC Niebles, J. Wu, K. Kitani, S. Lazebnik, S. Seitz, D. Fouhey, J. Johnson

What will we learn today?

Why Geometric Vision Matters
Geometric Primitives in 2D \& 3D
2D \& 3D Transformations

General Advice / Observations

Fundamentals: need to (eventually) feel easy
Try to do the math in parallel live in class!
If not grokking this: practice later, ask on Ed, OH
Lots of good (hard?) exercises in Szeliski's book

What will we learn today?

Why Geometric Vision Matters Geometric Primitives in 2D \& 3D 2D \& 3D Transformations

Images are
 2D projections of the 3D world

Simplified Image Formation

Figure: R. Szeliski

Can we understand the 3D world from 2D images?

CV is an ill-posed inverse problem
 2D Image
 3D Scene

Pixel Matrix

217	191	252	255	239
102	80	200	146	138
159	94	91	121	138
179	106	136	85	41
115	129	83	112	67
94	114	105	111	89

Objects Material

Shape/Geometry	Motion
Semantics	3D Pose

Brief History of Geometric Vision

- 2020-: geometry + learning
- 2010s: deep learning
- 2000s: local features, birth of benchmarks
- 1990s: digital camera, 3D reconstruction
- 1980s: epipolar geometry (stereo) [Longuet-Higgins]

Brief History of Geometric Vision

- 1860s: first Computer Vision startup? [Willème]

Brief History of Geometric Vision

- 1860s: first Computer Vision startup? [Willème]
- 1850s: birth of photogrammetry [Laussedat]
- 1840s: panoramic photography

Brief History of Geometric Vision

- 1860s: first Computer Vision startup? [Willème]
- 1850s: birth of photogrammetry [Laussedat]
- 1840s: panoramic photography
- 1822-39: birth of photography [Niépce, Daguerre]

Niépce, "La Table Servie", 1822

- 1773: general 3-point pose estimation [Lagrange]
- 1715: basic intrinsic calibration (pre-photography!) [Taylor]
- 1700's: topographic mapping from perspective drawings [Beautemps-Beaupré, Kappeler]

Brief History of Geometric Vision

- $15^{\text {th }}$ century: start of mathematical treatment of 3 D , first AR app?

Augmented reality invented by Filippo Brunelleschi (1377-1446)?
Tavoletta prospettica di Brunelleschi

Source: P. Sturm

Brief History of Geometric Vision

- $5^{\text {th }}$ century $B C$: principles of pinhole camera, a.k.a. camera obscura
- China: 5th century BC
- Greece: 4th century BC
- Egypt: 11th century
- Throughout Europe: from 11th century onwards

Chinese philosopher Mozi (470 to 390 BC)

First camera?

Greek philosopher Aristotle (384 to 322 BC)

What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D \& 3D

2D \& 3D
Transformations

Points

2D points: $\mathbf{x}=(x, y) \in \mathcal{R}^{2} \quad$ or column vector $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$
3D points: $\mathbf{x}=(x, y, z) \in \mathcal{R}^{3} \quad$ (often noted \mathbf{X} or \mathbf{P})

Homogeneous coordinates: append a 1

$$
\overline{\mathbf{x}}=(x, y, 1) \quad \overline{\mathbf{x}}=(x, y, z, 1)
$$

Why?

Everything is easier in Projective Space

2D Lines:
Representation: $l=(a, b, c)$
Equation: $a x+b y+c=0$
In homogeneous coordinates: $\bar{x}^{T} l=0$

General idea: homogenous coordinates unlock the full power of linear algebra!

Homogeneous coordinates in 2D

2D Projective Space: $\mathcal{P}^{2}=\mathcal{R}^{3}-(0,0,0) \quad$ (same story in 3D with \mathcal{P}^{3})

- heterogeneous \rightarrow homogeneous $\left[\begin{array}{l}x \\ y\end{array}\right] \Rightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- homogeneous \rightarrow heterogeneous $\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow\left[\begin{array}{l}x / w \\ y / w\end{array}\right]$
- points differing only by scale are equivalent: $(x, y, w) \sim \lambda(x, y, w)$

$$
\tilde{\mathbf{x}}=(\tilde{x}, \tilde{y}, \tilde{w})=\tilde{w}(x, y, 1)=\tilde{w} \overline{\mathbf{x}}
$$

Everything is easier in Projective Space

 2D Lines:$$
\begin{aligned}
& \tilde{\mathrm{x}}^{\mathrm{T}} \mathrm{l}=0, \forall \tilde{\mathrm{X}}=(x, y, w) \in P^{2} \\
& \mathrm{l}=\left(\hat{n}_{x}, \hat{n}_{y}, d\right)=(\hat{\mathbf{n}}, d) \text { with }\|\hat{\mathbf{n}}\|=1
\end{aligned}
$$

3D planes: same!

$$
\begin{aligned}
& \tilde{\mathbf{x}}^{\mathrm{T}} \mathrm{~m}=0, \forall \tilde{\mathrm{X}}=(x, y, z, w) \in P^{3} \\
& \mathbf{m}=\left(\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}, d\right)=(\hat{\mathbf{n}}, d) \text { with }\|\hat{\mathbf{n}}\|=1
\end{aligned}
$$

Lines in 3D

Two-point parametrization:

$$
\mathbf{r}=(1-\lambda) \mathbf{p}+\lambda \mathbf{q} \quad \tilde{\mathbf{r}}=\mu \tilde{\mathbf{p}}+\lambda \tilde{\mathbf{q}}
$$

Two-plane parametrization:

coordinates $\left(x_{0}, y_{0}\right) \&\left(x_{1}, y_{1}\right)$ of intersection
with planes at $z=0,1$ (or other planes)

Cross-product quick reminder

$$
\begin{aligned}
& \mathbf{a} \times \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \sin (\theta) \mathbf{n} \underbrace{\mathrm{Q}_{\mathrm{a}}^{|\mathrm{a} \times \mathrm{b}|}}_{\mathrm{a}} \\
& \mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\end{aligned}
$$

Benefits of Homogeneous Coordinates

- Line - Point duality:
- line between two 2D points: $\tilde{\mathbf{l}}=\tilde{\mathbf{x}}_{1} \times \tilde{\mathbf{x}}_{2}$
- intersection of two 2D lines: $\tilde{\mathbf{x}}=\tilde{\mathbf{l}}_{1} \times \tilde{\mathbf{l}}_{2}$
- Representation of Infinity:
- points at infinity: $(x, y, 0)$; line at infinity: $(0,0,1)$
- Parallel \& vertical lines are easy (take-home: intersect //)
- Makes 2D \& 3D transformations linear!

Questions?

What will we learn today?

Why Geometric Vision Matters
Geometric Primitives in 2D \& 3D
2D \& 3D Transformations

The camera as a coordinate transformation

Cameras and objects can move!

(a)

(b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate $(X, Y, Z, 1)$ and the $2 D$ projected point $(x, y, 1, d)$; (b) planar homography induced by points all lying on a common plane $\hat{\mathbf{n}}_{0} \cdot \mathbf{p}+c_{0}=0$.

2D Transformations Zoo

Figure: R. Szeliski

Transformation = Matrix Multiplication

Scale	
$\mathbf{M}=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$	Flip across \mathbf{y} $\mathbf{M}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ $\mathbf{M}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$Flip across origin $\mathbf{M}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ $\mathbf{S h e a r}$ $\mathbf{M}=\left[\begin{array}{cc}1 & s_{x} \\ s_{y} & 1\end{array}\right]$$\quad$Identity $\mathbf{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Scaling

$$
\underset{\mathrm{A}}{\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]} \times \underset{\mathrm{p}}{\left[\begin{array}{l}
x \\
y
\end{array}\right]}=\underset{\mathrm{p}^{\prime}}{\left[\begin{array}{c}
s_{x} x \\
s_{y} y
\end{array}\right]}
$$

Rotation

2D Translation

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

As a matrix?

2D Translation with homogeneous coordinates

$$
\left.\begin{array}{c}
\overbrace{\mathrm{x}}^{\mathrm{t}_{\mathrm{t}}} \\
t=\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
\mathrm{t}_{x} \\
t_{y}
\end{array}\right] \rightarrow\left[\begin{array}{c}
t_{x} \\
t_{y} \\
1
\end{array}\right] .
$$

2D Transformations with homogeneous coordinates

Figure: Wikipedia

Questions?

2D Transformations Zoo

Figure: R. Szeliski

Euclidean / Rigid

How many degrees of freedom?

Similarity

Similarity:
Scaling

+ ranstation $\left[\begin{array}{ccc}a & -b & t_{x} \\ b & a & t_{y} \\ 0 & 0 & 1\end{array}\right]$

Affine transformation

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines

- ratios are preserved

Projective transformation (homography)

Projective transformations are combinations of

- affine transformations; and
- projective warps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

How many degrees of freedom?
Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved

Projective transformation (homography)

Projective transformations are combinations of

- affine transformations; and
- projective warps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- ratios are not necessarily preserved

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

8 DOF: vectors (and therefore matrices) are defined up to scale

Questions?

Composing Transformations

Transformations $=$ Matrices $=>$ Composition by Multiplication!

$$
p^{\prime}=R_{2} R_{1} S p
$$

In the example above, the result is equivalent to

$$
p^{\prime}=R_{2}\left(R_{1}(S p)\right)
$$

Equivalent to multiply the matrices into single transformation matrix:

$$
p^{\prime}=\left(R_{2} R_{1} S\right) p
$$

Order Matters! Transformations from right to left.

Scaling \& Translating != Translating \& Scaling

$$
p^{\prime \prime}=T S p=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]
$$

$$
p^{\prime \prime \prime}=S T p=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & s_{x} t_{x} \\
0 & s_{y} & s_{y} t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+s_{x} t_{x} \\
s_{y} y+s_{y} t_{y} \\
1
\end{array}\right]
$$

Scaling + Rotation + Translation

$$
\begin{gathered}
\mathrm{p}^{\prime}=(\mathrm{T} R \mathrm{~S}) \mathrm{p} \\
p^{\prime}=T R S p=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
S & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
R S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{gathered}
$$

2D Transforms = Matrix Multiplication

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}\end{array}\right]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{2 \times 3}$	3	lengths	
similarity	$[s \mathbf{R}$	$\mathbf{t}]_{2 \times 3}$	4	angles
affine	$[\mathbf{A}]_{2 \times 3}$	6	parallelism	
projective	$[\tilde{\mathbf{H}}]_{3 \times 3}$	8	straight lines	

Table 2.1 Hierarchy of 2D coordinate transformations, listing the transformation name, its matrix form, the number of degrees of freedom, what geometric properties it preserves, and a mnemonic icon. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The $2 \times$ 3 matrices are extended with a third $\left[\mathbf{0}^{T} 1\right]$ row to form a full 3×3 matrixfor homogeneous coordinate transformations.

Questions?

3D Transforms = Matrix Multiplication

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}\end{array}\right]_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{3 \times 4}$	6	lengths	
similarity	$[s \mathbf{R}$	$\mathbf{t}]_{3 \times 4}$	7	angles
affine	$[\mathbf{A}]_{3 \times 4}$	12	parallelism	
projective	$[\tilde{\mathbf{H}}]_{4 \times 4}$	15	straight lines	

Table 2.2 Hierarchy of $3 D$ coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 3×4 matrices are extended with a fourth $\left[\begin{array}{ll}\mathbf{0}^{T} & 1\end{array}\right]$ row to form a full 4×4 matrix for homogeneous coordinate transformations. The mnemonic icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

3D Rotations: SO(3) representations

Euler Angles: yaw, pitch, roll (α, β, γ)
\rightarrow compose $R(\gamma) R(\beta) R(\alpha)$ (order, axes!)

Axis-angle: (\hat{n}, θ) or $\omega=\theta \hat{n}$
\rightarrow matrix via Rodrigues formula (simple for small θ)

$$
\mathbf{R}(\hat{\mathbf{n}}, \theta)=\mathbf{I}+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2} \approx \mathbf{I}+[\theta \hat{\mathbf{n}}]_{\times}
$$

Unit Quaternions: $\mathrm{q}=(\widehat{x, y, z}, w)=\left(\sin \frac{\theta}{2} \widehat{\boldsymbol{n}}, \cos \frac{\theta}{2}\right),\|q\|=1$
\rightarrow continuous, nice algebraic properties, matrix via Rodrigues

$$
\mathbf{R}(\mathbf{q})=\left[\begin{array}{ccc}
1-2\left(y^{2}+z^{2}\right) & 2(x y-z w) & 2(x z+y w) \\
2(x y+z w) & 1-2\left(x^{2}+z^{2}\right) & 2(y z-x w) \\
2(x z-y w) & 2(y z+x w) & 1-2\left(x^{2}+y^{2}\right)
\end{array}\right]
$$

Questions?

What did we learn today?

Geometry is essential to Computer Vision!
Geometric Primitives in 2D \& 3D
homogeneous coordinates, points, lines, and planes in 2D \& 3D
2D \& 3D Transformations
scaling, translation, rotation, rigid, similarity, affine, homography
Next Lecture: putting this in "perspective"...

Appendix

Intersecting Parallel Lines

Intersecting Parallel Lines

2D planar transformations

y

Polar coordinates...
$\mathrm{x}=\mathrm{r} \cos (\varphi)$
$y=r \sin (\varphi)$
$x^{\prime}=r \cos (\varphi+\theta)$
$y^{\prime}=r \sin (\varphi+\theta)$
Trigonometric Identity...
$x^{\prime}=r \cos (\varphi) \cos (\theta)-r \sin (\varphi) \sin (\theta)$
$y^{\prime}=r \sin (\varphi) \cos (\theta)+r \cos (\varphi) \sin (\theta)$

Substitute...
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$

