Lesson 2-3 Topology

Intro to Network Models: Links and Diameter

Network Types:

1D → Linear $2D \rightarrow Mesh$

Fully Connected = every node has a direct connect to every other node.

Links : number of connections (Links).

Linear Network: P-1 links Mesh Network: 2P links

Fully Connected Network: $P(P-1) / 2 links \approx P^2 / 2$

The number of links is important because it is a proxy for cost - the more links the higher the price.

<u>Diameter: the longest shortest path</u>. Take all pairs of nodes and compute the shortest path, then take the longest of these paths.

Linear Network: P-1 diameter Mesh Network: $2\sqrt{P} - 1$ diameter Fully Connected Network: 1 diameter

Improve the Diameter of a Linear Network

Diameter of a Ring network is: *floor* (P / 2)

Improve the Diameter of a 2-D Mesh

Anything method that connects the corners will cut the diameter in half. Wrapping the rows and columns leads to a Torus network.

Bisection (Band)Width

Bisection Width = the minimum number of links that have to be removed to cut the network into two equal groups of nodes.

Linear Network: bisection width = 1 Ring Network: bisection width = 2

2D Mesh Network: bisection width = \sqrt{P} where P is the number of nodes

Fully Connected Network: P2 / 4

Bandwidth: if equal link speed (β) then: $\beta 2D(P) = \beta 2D(P) * \beta$

Improve the Bisection of a 2D Mesh

Where should links be added to double the bisection width of a 2D Mesh network? Wrap around links will double the bisection width.

Some Other Network Topologies

Other topologies:

Tree:

Links: P links

Diameter: log P links

Bisection: 1

This is a terrible bisection width. So designers add many more wires near the top of the tree.

D dimensional Mesh or Torus:

If it has d root(P) nodes per dimension

Links: dP

Diameter: $\frac{1}{2} d(P)^{1/d}$ Bisection: $2(P)^{(d-1)/d}$

D dimensional meshes and tori are very important, many of the worlds supercomputers use low dimensional meshes.

Hyper Cubes: are log(P) dimensional torus

Links: P*log(P)
Diameter: log(P)
Bisection: P/2

Hypercubes have a high cost of wires but they also have a high bisection width.

Type Network	Links	Diameter (small = good)	Bisection (large = good)
Linear	P-1	P-1	1
Mesh	2P	$2\sqrt{P}-1$	2
Fully Connected	P ² / 2	1	\sqrt{P}
Tree	Р	log(P)	1
D-Dimensional Mesh	dP	½ d(P) ^{1/d}	2(P) ^{(d-1)/d}
Hyper Cube	P*log(P)	log(P)	P/2

Mappings and Congestion

Mappings: running the logical network on an actual physical network.

For example: An algorithm is designed for a ring network, but the underlying physical network is a 2D torus. There should be little to no congestion.

If the algorithm is designed for a 2D torus network, but the underlying physical network is a ring, there will be a lot of congestion.

<u>Congestion = maximum number of logical edges that map to a physical edge.</u>

Congestion of a ring going to a torus = 1 Congestion of a torus going to a ring => 6

Lower Bound on Congestion

 $B_x \rightarrow physical bisection width L \rightarrow logical edges cut$

 $C \ge L/Bx$ and $L \ge BL$

So
$$C \ge L/Bx \ge B_1/B_x$$

If you know the congestion. you'll know how much worse the cost of your algorithm will be on a physical network with a lower bisection capacity.

Exploiting Higher Deimensions

Exploit the extra capacity of a network that has extra links.