
CS 170, Spring 2023 Discussion 4 P. Raghavendra and J. Wright

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 Practice with SCCs

(a) Design an efficient algorithm that given a directed graph G, outputs the set of all vertices v such
that there is a cycle containing v. In other words, your algorithm should output all v such that
there is a non-empty path from v to itself in G.

(b) Design an efficient algorithm that given a directed graph G determines whether there is a vertex
v from which every other vertex can be reached. (Hint: first solve this for directed acyclic graphs.
Note that running DFS from every single vertex is not efficient.)

2 Shortest Paths with Negative Weights

(a) Dijkstra’s algorithm doesn’t work on graphs with negative edge weights. Here is one attempt to
fix it:

(a) Add a large number M to every edge so that there are no negative weights left.

(b) Run Dijkstra’s to find the shortest path in the new graph.

(c) Return the path found by Dijkstra’s, but with the old edge weights (i.e. subtract M from
the weight of each edge).

Show that this algorithm doesn’t work by finding a graph for which it must give the wrong answer.
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(b) Run the Bellman-Ford algorithm on the following graph, from source A. Process edges (u, v) in
lexicographic order, sorting first by u then by v.

A

B C

DE

FG H I

1

-10

6

2

-5

1

3

-2

4 -10

-2

1

2

(c) What problem occurs when we change the weight of edge (H,A) to 1? How can we detect this
problem when running Bellman-Ford? Why does this work?

(d) Let G = (V,E) be a directed graph. Under what condition does the Bellman-Ford algorithm
returns the same shortest path tree (from source s ∈ V ) regardless of the ordering on edges?
(Hint: Think about how there could be multiple shortest path trees).
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3 Doctor

A doctor’s office has n customers, labeled 1, 2, . . . , n, waiting to be seen. They are all present right
now and will wait until the doctor can see them. The doctor can see one customer at a time, and we
can predict exactly how much time each customer will need with the doctor: customer i will take t(i)
minutes.

(a) We want to minimize the average waiting time (the average of the amount of time each customer
waits before they are seen, not counting the time they spend with the doctor). What order should
we use? You do not need to justify your answer for this part. (Hint: sort the customers by )

(b) Let x1, x2, . . . , xn denote an ordering of the customers (so we see customer x1 first, then customer
x2, and so on). Prove that the following modification, if applied to any order, will never increase
the average waiting time:

• If i < j and t(xi) ≥ t(xj), swap customer i with customer j.

(For example, if the order of customers is 3, 1, 4, 2 and t(3) ≥ t(4), then applying this rule with
i = 1 and j = 3 gives us the new order 4, 1, 3, 2.)

(c) Let u be the ordering of customers you selected in part (a), and x be any other ordering. Prove
that the average waiting time of u is no larger than the average waiting time of x—and therefore
your answer in part (a) is optimal.

Hint: Let i be the smallest index such that ui ̸= xi. Use what you learned in part (b). Then,
use proof by induction (maybe backwards, in the order i = n, n− 1, n− 2, . . . , 1, or in some other
way).
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4 Activity Selection

Assume there are n activities each with its own start time ai and end time bi such that ai < bi.
All these activities share a common resource (think computers trying to use the same printer). A
feasible schedule of the activities is one such that no two activities are using the common resource
simultaneously. Mathematically, the time intervals are disjoint: (ai, bi) ∩ (aj , bj) = ∅. The goal is to
find a feasible schedule that maximizes the number of activities k.

Here are two potential greedy algorithms for the problem.
Algorithm A: Select the shortest-duration activity that doesn’t conflict with those already selected

until no more can be selected.
Algorithm B: Select the earliest-ending activity that doesn’t conflict with those already selected

until no more can be selected.

(a) Show that Algorithm A can fail to produce an optimal output.

(b) Show that Algorithm B will always produce an optimal output. (Hint: To prove correctness, show
how to take any other solution S and repeatedly swap one of the activities used by Algorithm B
into S while maintaining that S has no overlaps)

(c) Challenge Problem: Show that Algorithm A will always produce an output at least half as large
as the optimal output.

Hint: Show that every activity in the optimal solution overlaps with at least 1 activity in Algorithm
A’s solution, and any activity in Algorithm A’s solution can overlap with at most 2 activities in
the optimal solution
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5 Finding Counterexamples

In this problem, we give example greedy algorithms for various problems, and your goal is to find a
counterexample where they do not find the best solution.

(a) In the travelling salesman problem, we have a weighted undirected graph G(V,E) with all possible
edges. Our goal is to find the cycle that visits all the vertices exactly once with minimum length.

One greedy algorithm is: Build the cycle starting from an arbitrary start point s, and initialize
the set of visited vertices to just s. At each step, if we are currently at vertex u and our cycle has
not visited all the vertices yet, add the shortest edge from u to an unvisited vertex v to the cycle,
and then move to v and mark v as visited. Otherwise, add an edge from the current vertex to s
to the cycle, and return the now complete cycle.

(b) In the maximum matching problem, we have an undirected graph G(V,E) and our goal is to find
the largest matching E′ in E, i.e. the largest subset E′ of E such that no two edges in E′ share
an endpoint.

One greedy algorithm is: While there is an edge e = (u, v) in E such that neither u or v is already
an endpoint of an edge in E′, add any such edge to E′. (Challenge: Can you prove that this
algorithm still finds a solution whose size is at least half the size of the best solution?)

5


	Practice with SCCs
	Shortest Paths with Negative Weights
	 Doctor 
	 Activity Selection 
	Finding Counterexamples

