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Outline

• MapReduce: motivation and main idea
• The MapReduce workflow
• Mappers and Reducers
• Example: counting words in documents
• DIY joins
• Mapping and reducing on multiple rounds
• Graph manipulation examples
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Motivation

• Datasets can be extremely large 
– Tens to hundreds of terabytes

• Traditional programming is serial
– Strong intrinsic limit on scalability

• Parallel programming 
– Break processing into parts that can be executed 

concurrently on multiple processors
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Challenges

• Identify tasks that can run concurrently and/or groups of data 
that can be processed concurrently 

• Not all problems can be parallelized
• Multiple possible parallel architectures/hardware
– How to organize computations on this architecture?

• Different programming models
– Message Passing 
– Shared Memory
– Distributed memory

• The programmer shoulders the burden of managing 
concurrency and coordination
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Map Reduce

MapReduce is a parallel, distributed programming model and 
implementation infrastructure used to process and manage large 
data sets.

• Core idea: 
– map the dataset into a collection of pairs and then 
– reduce over all pairs with the same key

• Simple Programming interface: Map + Reduce
– The map component of a MapReduce job typically parses 

input data and distills it down to some intermediate result. 
– The reduce component of a MapReduce job collates these 

intermediate results and distills them down even further 
to the desired output

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 4



Map Reduce Workflow

• The processes shaded in yellow are programs specific to the 
data set being processed

• The processes shaded in green are present in all MapReduce 
pipelines.

• We (the programmer) need to create the map  and the reduce 
script

• All the rest is handled by the Amazon Elastic MapReduce 
framework (ERM)
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Map Reduce

• Distributed implementation that hides all the 
messy details 
– Fault tolerance (via distributed storage)
– I/O scheduling 
– Parallelization and coordination

• Functional programming language Inspired by 
map and reduce functions in Lisp
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Map #‘length’ (() (a) (ab) (abc))

Reduce #‘+’ (0 1 2 3)

0 1 2 3
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Programing Model

The programmer only needs to specify two functions:

• Map Function
map (in_key, in_value) -> list(out_key, intermediate_value) 

• Processes input key/value pair
• Produces set of output key/intermediate value pairs

• Reduce Function
reduce (out_key, intermediate_value) -> list(out_value)

– Process intermediate key/value pairs
– Combines intermediate values per unique key

– Produce a set of merged output values(usually just one)
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Map Reduce paradigm

• Very general approach can be used for many 
applications

• One “master” scheduler which assigns tasks 
(mapping or reducing) to machines

• No shared state between machines
– Massively parallelizable

• Tolerates very high failure rates on workers
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MapReduce model
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[input (key, value)]
[Unique key, output value list]

Map Function Shuffle (merge sort by key)

Reduce function

[intermediate(key, value)]



MapReduce workflow

• When we start a MapReduce workflow, the framework (i.e., 
the master) will split the input into segments passing each 
segment to a different machine

• Each machine then runs the map script on the data segment 
assigned to it
– The map script takes the input data and maps it to a list of 

<key, value> pairs
– The map script does not do any aggregation!
– You can think of if as a parser that transforms the data into 

<key, value> pairs which can be processed by the reducer
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MapReduce workflow

• The resulting pairs are then shuffled in the machines in the 
sort phase
– Pairs with the same key are grouped into the same 

machine
• The reduce script takes as input a  collection of <key, value> 

pairs and “reduces” (aggregates ) them according to the 
specifications.

• Finally, the results of the reducers are combined in a final 
result.
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Data Flow

• Input and final output are stored on a distributed file 
system
– Scheduler tries to schedule map tasks “close” to physical 

storage location of input data
• Intermediate results are stored on local file system of 

map and reduce workers
• Output is often input to another map reduce task
• Some technical details will depend on implementation 
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Example: Word Count

• Suppose we have a large corpus of text 
documents

• We want to count the number of times each 
distinct word appears in the each document 
and/or in the corpus

• Sample application: analyze web server logs to 
find popular URLs
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Example: Word Count

• Simple idea
– We split the documents into multiple machines,
– For each  document we enumerate the words in the 

documents
– We shuffle the words so that all instances of the same 

word are stored in the same machine 
– We aggregate the words to obtain the count

• The above captures the essence of MapReduce
– Great thing is it is easily parallelizable
– Naïve parallelism in the breaking down and 

aggregation
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Example: Word Count
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the small 
brown fox

a fox 
speaks to 
another 

fox

brown 
cow cross 
the road

Input ShuffleSplit

the small 
brown fox

a fox 
speaks to 
another 

fox

brown 
cow cross 
the road

Map

Map

Map

Map

Reduce

Reduce

Reduce

<the, 1>
<small, 1>
<brown, 1>
<fox, 1>

<a, 1>
<fox, 1>
<fox, 1>
<speaks, 1>
<to, 1>
<another, 1>

<cow, 1>
<cross, 1>
<the, 1>
<road, 1>

Output

a, 1
another 1
brown, 2
cross, 1
cow, 1
fox, 3

road, 1
small, 1

speaks, 1
the, 2
to, 1

<brown, 1>

<brown,1>
<fox,1>
<a,1>
<fox,1>
<fox,1>
<another, 1>
<brown, 1>
<cow, 1>
<cross, 1>

<the,1>
<small,1>
<speaks,1>
<to,1>
<the,1>
<road, 1>



Word Count using MapReduce

map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

• The code presented here should be interpreted 
as a guideline pseudocode
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Setting up the workflow

• We need a ”main” function to initialized the 
Map Reduce operations and pass the input
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Word count example
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// enumerate occurrences of each word with count of 1
def MapFn: (String, String) -> (String, Int) {    

for w in input.split(){        
emit(w, 1);    

}
}

// sum the total counts of each word
def ReduceFn:(String, List(Int)) -> (String, Int){

sum = 0;    
for c in input.value(){        

sum += c;    
}    
emit(input.key(), sum);

}

// define your pipeline
def main() {

Table<String, String> table =read(table_path);
Table<String, Int> output = table.MapFn().ReduceFn();
write(output)

}



Constraints on the mapper and reducer

• The mapper must be equivalent to applying a 
deterministic pure function (i.e., a 
mathematical function) to each input 
independently

• The reducer must be equivalent to applying a 
deterministic pure function to the sequence of 
values for each key
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Benefits of the approach

• When a program contains only pure functions, 
expressions can be evaluated in any order, 
lazily, and in parallel 
– Consistent results regardles of how computation is 

partitioned
• Referential transparency: a call expression can 

be replaced by its value (or vice versa) without 
changing the program
– Re-computation and caching of results, as needed.
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Coordination

21

• Master assign tasks to the available mappers and 
reducers

• Master data structures
– Task status: (idle, in-progress, completed)
– Idle tasks get scheduled as workers become available
– When a map task completes, it sends the master the 

location and sizes of its  intermediate files, one for 
each reducer

– Master incrementally pushes this info to reducers
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Fault Tolerance
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• Map worker failure
– Completed or in-progress tasks 

are reset to idle
• Reduce worker failure

– Only in-progress tasks are reset 
to idle

• Master failure
– MapReduce Task is aborted and 

client is notified

• Reset tasks are rescheduled on another machine
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Master pings workers periodically to detect failures
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Other MapReduce Functions

• Sort
• Unique
• Sample
• First
• Filter
• Join

• Joins are usually computed “under 
the hood” by most MapReduce
implementations (like in SQL)

• But you can imagine having to do 
them yourself…
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Subject Predicate Object

Barack Obama won the electoral vote

Kamala Lopez wrote an op-ed for HuffPo

Charles Mingus wrote jazz

Barack Obama opposed the appropriations bill

Barack Obama listens to jazz

Joins

Category Entity

Person Barack Obama

Person Kamala Lopez

Person Charles Mingus

Huffington Post Columnists Barack Obama

Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama

Jazz Composers Charles Mingus

Harvard Law School Graduate Barack Obama
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FACTS CATEGORIES



Subject Predicate Object

Barack Obama won the electoral vote

Kamala Lopez wrote an op-ed for HuffPo

Charles Mingus wrote jazz

Barack Obama opposed the appropriations bill

Barack Obama listens to jazz

Joins

Desired output:

Subject Predicate Object Categories

Barack Obama won the electoral vote Person, US Presidents, Huffington Post Columnists,
Harvard Law School Graduate

Kamala Lopez wrote an op-ed for HuffPost Person, Huffington_Post_Columnists, Actor

... .... ..... ....

Category Entity

Person Barack Obama

Person Kamala Lopez

Person Charles Mingus

Huffington Post Columnists Barack Obama

Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama

Jazz Composers Charles Mingus

Harvard Law School Graduate Barack Obama
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FACTS CATEGORIES

select * from Facts, Categories
where Subject == Entity
GroupBy Subject, Predicate, Object



Ideas?
• For the mapper: Break down the tables!
– Generate items corresponding to the lines of the table
– Only include the attributes selected by the join! 
– The parameter used as join condition will become the “key” 

of of the elements (subject/entity in this case)
– We need to account for different possible relations and break 

them down accordingly

• For the reducer: 
– We group up categories with the same entity 
• This applies to the elements generated from “mapping ” 

the CATEGORIES table
– For each element generated from the FACT table, we 

associated the categories corresponding to the same entity 
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DIY Joins

def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {

emit(v.Subject, v)
} else {

emit(v.Entity, v)
}

}

Facts
Subject Predicate Object

def ReduceFn: (String, Obj) -> (Fact, List(String)){
all_cats = []; all_facts = []
for v in input.value(){

if (typeof(v) == Fact) {
all_facts.append(v)

} else {
all_cats.append(v.Category)

}
}
for f in all_facts { emit(f, all_cats); }

}

Categories
Category Entity
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def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {

emit(v.Subject, v)
} else {

emit(v.Entity, v)
}
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Facts
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Categories
Category Entity

DIY Joins
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def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {
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Categories
Category Entity

DIY Joins
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Multiple Reduce rounds

• Sometimes we may want to apply the shuffle 
and reduce more than once

• This are referred as rounds
• The number of rounds is generally used to 

characterize the complexity of a MapReduce 
algorithm
– Local computations are fast
– Communications between machines are the 

bottleneck
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Exercise:
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// enumerate occurrences of each word with count of 1
def MapFn1: String -> (String, Int) {    

???
}
def ReduceFn1: (String, List(Int)) -> (String, Int) {    

???
}
// sum the total counts of each word
def ReduceFn2: (String, List(Int)) -> (String, Int) {

???
}
// define your pipeline
def main() {

Table<String, String> table = read(table_path)
Table<String, Int> output =    
table.MapFn1().ReduceFn1().ReduceFn2();
write(output)

}

• Given a collection of documents Find the number of 
unique documents that each word occurs in



Solution
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// enumerate occurrences of each word with count of 1
def MapFn1: (String, String) -> ((String, String), Int) {    

for w in input.value().split(){        
emit((input.key(), w), 1)    

}
}

// eliminates multiple copies of the pair for each word-document pair
def ReduceFn1: ((String,String), List(Int)) -> (String, Int) {

emit(input.key()[1], 1)  
}

// sum the total counts of each word 
def ReduceFn2: (String, List(Int)) -> (String, Int) {

sum = 0    
for (w, c) in input{ 

sum += c
}    
emit(w, sum)

}

// define your pipeline
def main() {

Table<String, String> table = read(table_path)
Table<String, Int> output =    table.MapFn1().MapFn2().ReduceFn()
write(output)

}

We just select one item from the list 

Document id

In the second round each



Bonus Question

Do these two produce the same output?
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This code just counts the number of 
occurrences of the words in the documents



Multiple mapping rounds

We can also have multiple mapping rounds
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Consider again the word count 
problem
• We may first want to break 

down the documents in 
sentences (first map round)

• We then break down the 
sentences in words (second 
map round)

• The we aggregate in the 
reduce round

No aggregation occurs 
during MAP rounds!



How much can we parallelize?
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Assume we have N documents.
• How much can we parallelize 

the first map round?
• I.e., how many mappers can 

we use at most?
a) 𝑁
b) √𝑁
c) Depends on the length 

of the documents

• Potentially we could assign 
every document to a single 
machine!



How much can we parallelize?
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Assume we in the first round we 
generated M (DocID, Sent) pairs 
of whom D are distincy
• How much can we parallelize 

the second map round?
a) 𝑁
b) 𝑀
c) 𝐷
d) min{𝑁,𝑀}
e) 𝑀/𝐷
f) max{𝑁,𝑀}

• Potentially we could assign 
(DocID, Sent) pair to a single 
machine!

Mapping rounds implement naïve parallelism which is extremely scalable



How much can we parallelize?
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Assume now there are W 
distinct words in all of the 
documents 
• How much can we parallelize 

the second map round?
• I.e., how many reducers can 

we use at most?
a) 𝑁
b) 𝑀
c) W
d) D
e) min{𝐷,𝑊}
f) max{𝑊,𝐷}

• All pairs with the same key 
(i.e., the same word) must be 
processed by the same 
reducer!



Quiz!
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• Do these two workflows realize the same functionality?
• Yes!

• Which one is more likely to execute faster?
• In general, Workflow 1 is more parallelizable and likely to be faster!
• Still...not a clear answer!

• Communication between machines plays a role!
• More rounds more latency!

Workflow 1 Workflow 2
Small jobs:
• Easy 

parallelization
• Easy load-

balancing
• Faster recovery 

form failures

Complex jobs:
• Try to 

decompose 
nested loops 
into multiple 
mapping 
steps



Example on Graph Manipulation

• Consider a directed graph described as an 
adjacency list
– 𝑠!: 𝑑!, 𝑑", … , 𝑑#
– 𝑠": 𝑑!, 𝑑$, … , 𝑑%
– …
– 𝑠": 𝑑!, 𝑑$, … , 𝑑%

• Use MapReduce to construct the reverse graph
– Give the adjacency list of the graph in which all edges 

are reversed
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Excercise 2

• Let a market basket be a list of item purchased 
– For simplicity assume there is at most one of an 

item in the basket
• Given a large set of market baskets, find all 

frequent pairs
– A pair is frequent if it appears in at least half of 

the baskets
• Assume for simplicity that the number of baskets 𝑛 is 

fixed and known to the reducers 

• Try to find a fast implementation J
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Ideas?

• Recall what we said about avoiding nested loops 
and using multiple mapping rounds

• For the mapper: 

• For the reducer:
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Reading

• Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing   on Large Clusters
http://labs.google.com/papers/mapreduce.html

• Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The 
Google File System

http://labs.google.com/papers/gfs.html
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http://labs.google.com/papers/mapreduce.html


Conclusion

MapReduce allows to achieve:
• Fault tolerance: A machine or hard drive might crash. 

– The MapReduce framework automatically re-runs failed tasks. 
• Speed: Some machine might be slow because it's 

overloaded. 
– The framework can run multiple copies of a task and keep the 

result of the one that finishes first. 
• Network locality: Data transfer is expensive. 

– The framework tries to schedule map tasks on the machines 
that hold the data to be processed. 

• Monitoring: Will my job finish before dinner?!? 
– The framework provides a web-based interface describing jobs.
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