
CS1951A: Data Science

Lorenzo De Stefani
Spring 2022

Lecture 8: Map Reduce

Outline

• MapReduce: motivation and main idea
• The MapReduce workflow
• Mappers and Reducers
• Example: counting words in documents
• DIY joins
• Mapping and reducing on multiple rounds
• Graph manipulation examples

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 1

Motivation

• Datasets can be extremely large
– Tens to hundreds of terabytes

• Traditional programming is serial
– Strong intrinsic limit on scalability

• Parallel programming
– Break processing into parts that can be executed

concurrently on multiple processors

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 2

Challenges

• Identify tasks that can run concurrently and/or groups of data
that can be processed concurrently

• Not all problems can be parallelized
• Multiple possible parallel architectures/hardware
– How to organize computations on this architecture?

• Different programming models
– Message Passing
– Shared Memory
– Distributed memory

• The programmer shoulders the burden of managing
concurrency and coordination

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 3

Map Reduce

MapReduce is a parallel, distributed programming model and
implementation infrastructure used to process and manage large
data sets.

• Core idea:
– map the dataset into a collection of pairs and then
– reduce over all pairs with the same key

• Simple Programming interface: Map + Reduce
– The map component of a MapReduce job typically parses

input data and distills it down to some intermediate result.
– The reduce component of a MapReduce job collates these

intermediate results and distills them down even further
to the desired output

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 4

Map Reduce Workflow

• The processes shaded in yellow are programs specific to the
data set being processed

• The processes shaded in green are present in all MapReduce
pipelines.

• We (the programmer) need to create the map and the reduce
script

• All the rest is handled by the Amazon Elastic MapReduce
framework (ERM)

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 5

(key, value)

Map Reduce

• Distributed implementation that hides all the
messy details
– Fault tolerance (via distributed storage)
– I/O scheduling
– Parallelization and coordination

• Functional programming language Inspired by
map and reduce functions in Lisp

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 6

Map #‘length’ (() (a) (ab) (abc))

Reduce #‘+’ (0 1 2 3)

0 1 2 3

6

Programing Model

The programmer only needs to specify two functions:

• Map Function
map (in_key, in_value) -> list(out_key, intermediate_value)

• Processes input key/value pair
• Produces set of output key/intermediate value pairs

• Reduce Function
reduce (out_key, intermediate_value) -> list(out_value)

– Process intermediate key/value pairs
– Combines intermediate values per unique key

– Produce a set of merged output values(usually just one)

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 7

Map Reduce paradigm

• Very general approach can be used for many
applications

• One “master” scheduler which assigns tasks
(mapping or reducing) to machines

• No shared state between machines
– Massively parallelizable

• Tolerates very high failure rates on workers

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 8

MapReduce model

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 9

[input (key, value)]
[Unique key, output value list]

Map Function Shuffle (merge sort by key)

Reduce function

[intermediate(key, value)]

MapReduce workflow

• When we start a MapReduce workflow, the framework (i.e.,
the master) will split the input into segments passing each
segment to a different machine

• Each machine then runs the map script on the data segment
assigned to it
– The map script takes the input data and maps it to a list of

<key, value> pairs
– The map script does not do any aggregation!
– You can think of if as a parser that transforms the data into

<key, value> pairs which can be processed by the reducer

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 10

MapReduce workflow

• The resulting pairs are then shuffled in the machines in the
sort phase
– Pairs with the same key are grouped into the same

machine
• The reduce script takes as input a collection of <key, value>

pairs and “reduces” (aggregates) them according to the
specifications.

• Finally, the results of the reducers are combined in a final
result.

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 11

Data Flow

• Input and final output are stored on a distributed file
system
– Scheduler tries to schedule map tasks “close” to physical

storage location of input data
• Intermediate results are stored on local file system of

map and reduce workers
• Output is often input to another map reduce task
• Some technical details will depend on implementation

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 12

Example: Word Count

• Suppose we have a large corpus of text
documents

• We want to count the number of times each
distinct word appears in the each document
and/or in the corpus

• Sample application: analyze web server logs to
find popular URLs

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 13

Example: Word Count

• Simple idea
– We split the documents into multiple machines,
– For each document we enumerate the words in the

documents
– We shuffle the words so that all instances of the same

word are stored in the same machine
– We aggregate the words to obtain the count

• The above captures the essence of MapReduce
– Great thing is it is easily parallelizable
– Naïve parallelism in the breaking down and

aggregation

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 14

Example: Word Count

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 15

the small
brown fox

a fox
speaks to
another

fox

brown
cow cross
the road

Input ShuffleSplit

the small
brown fox

a fox
speaks to
another

fox

brown
cow cross
the road

Map

Map

Map

Map

Reduce

Reduce

Reduce

<the, 1>
<small, 1>
<brown, 1>
<fox, 1>

<a, 1>
<fox, 1>
<fox, 1>
<speaks, 1>
<to, 1>
<another, 1>

<cow, 1>
<cross, 1>
<the, 1>
<road, 1>

Output

a, 1
another 1
brown, 2
cross, 1
cow, 1
fox, 3

road, 1
small, 1

speaks, 1
the, 2
to, 1

<brown, 1>

<brown,1>
<fox,1>
<a,1>
<fox,1>
<fox,1>
<another, 1>
<brown, 1>
<cow, 1>
<cross, 1>

<the,1>
<small,1>
<speaks,1>
<to,1>
<the,1>
<road, 1>

Word Count using MapReduce

map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

• The code presented here should be interpreted
as a guideline pseudocode

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 16

Setting up the workflow

• We need a ”main” function to initialized the
Map Reduce operations and pass the input

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 17

Word count example

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 18

// enumerate occurrences of each word with count of 1
def MapFn: (String, String) -> (String, Int) {

for w in input.split(){
emit(w, 1);

}
}

// sum the total counts of each word
def ReduceFn:(String, List(Int)) -> (String, Int){

sum = 0;
for c in input.value(){

sum += c;
}
emit(input.key(), sum);

}

// define your pipeline
def main() {

Table<String, String> table =read(table_path);
Table<String, Int> output = table.MapFn().ReduceFn();
write(output)

}

Constraints on the mapper and reducer

• The mapper must be equivalent to applying a
deterministic pure function (i.e., a
mathematical function) to each input
independently

• The reducer must be equivalent to applying a
deterministic pure function to the sequence of
values for each key

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 19

Benefits of the approach

• When a program contains only pure functions,
expressions can be evaluated in any order,
lazily, and in parallel
– Consistent results regardles of how computation is

partitioned
• Referential transparency: a call expression can

be replaced by its value (or vice versa) without
changing the program
– Re-computation and caching of results, as needed.

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 20

Coordination

21

• Master assign tasks to the available mappers and
reducers

• Master data structures
– Task status: (idle, in-progress, completed)
– Idle tasks get scheduled as workers become available
– When a map task completes, it sends the master the

location and sizes of its intermediate files, one for
each reducer

– Master incrementally pushes this info to reducers

CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 4/11/22

Fault Tolerance

22

• Map worker failure
– Completed or in-progress tasks

are reset to idle
• Reduce worker failure

– Only in-progress tasks are reset
to idle

• Master failure
– MapReduce Task is aborted and

client is notified

• Reset tasks are rescheduled on another machine

CS1951A - Data Science - Spring'22 - Lorenzo De Stefani

Master pings workers periodically to detect failures

4/11/22

Other MapReduce Functions

• Sort
• Unique
• Sample
• First
• Filter
• Join

• Joins are usually computed “under
the hood” by most MapReduce
implementations (like in SQL)

• But you can imagine having to do
them yourself…

23

Subject Predicate Object

Barack Obama won the electoral vote

Kamala Lopez wrote an op-ed for HuffPo

Charles Mingus wrote jazz

Barack Obama opposed the appropriations bill

Barack Obama listens to jazz

Joins

Category Entity

Person Barack Obama

Person Kamala Lopez

Person Charles Mingus

Huffington Post Columnists Barack Obama

Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama

Jazz Composers Charles Mingus

Harvard Law School Graduate Barack Obama

24

FACTS CATEGORIES

Subject Predicate Object

Barack Obama won the electoral vote

Kamala Lopez wrote an op-ed for HuffPo

Charles Mingus wrote jazz

Barack Obama opposed the appropriations bill

Barack Obama listens to jazz

Joins

Desired output:

Subject Predicate Object Categories

Barack Obama won the electoral vote Person, US Presidents, Huffington Post Columnists,
Harvard Law School Graduate

Kamala Lopez wrote an op-ed for HuffPost Person, Huffington_Post_Columnists, Actor

...

Category Entity

Person Barack Obama

Person Kamala Lopez

Person Charles Mingus

Huffington Post Columnists Barack Obama

Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama

Jazz Composers Charles Mingus

Harvard Law School Graduate Barack Obama

25

FACTS CATEGORIES

select * from Facts, Categories
where Subject == Entity
GroupBy Subject, Predicate, Object

Ideas?
• For the mapper: Break down the tables!
– Generate items corresponding to the lines of the table
– Only include the attributes selected by the join!
– The parameter used as join condition will become the “key”

of of the elements (subject/entity in this case)
– We need to account for different possible relations and break

them down accordingly

• For the reducer:
– We group up categories with the same entity
• This applies to the elements generated from “mapping ”

the CATEGORIES table
– For each element generated from the FACT table, we

associated the categories corresponding to the same entity

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 26

DIY Joins

def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {

emit(v.Subject, v)
} else {

emit(v.Entity, v)
}

}

Facts
Subject Predicate Object

def ReduceFn: (String, Obj) -> (Fact, List(String)){
all_cats = []; all_facts = []
for v in input.value(){

if (typeof(v) == Fact) {
all_facts.append(v)

} else {
all_cats.append(v.Category)

}
}
for f in all_facts { emit(f, all_cats); }

}

Categories
Category Entity

27

def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {

emit(v.Subject, v)
} else {

emit(v.Entity, v)
}

}

Facts
Subject Predicate Object

def ReduceFn: (String, Obj) -> (Fact, List(String)){
all_cats = []; all_facts = []
for v in input.value(){

if (typeof(v) == Fact) {
all_facts.append(v)

} else {
all_cats.append(v.Category)

}
}
for f in all_facts { emit(f, all_cats); }

}

Categories
Category Entity

DIY Joins

28

def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {

emit(v.Subject, v)
} else {

emit(v.Entity, v)
}

}

Facts
Subject Predicate Object

def ReduceFn: (String, Obj) -> (Fact, List(String)){
all_cats = []; all_facts = []
for v in input.value(){

if (typeof(v) == Fact) {
all_facts.append(v)

} else {
all_cats.append(v.Category)

}
}
for f in all_facts { emit(f, all_cats); }

}

Categories
Category Entity

DIY Joins

29

def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {

emit(v.Subject, v)
} else {

emit(v.Entity, v)
}

}

Facts
Subject Predicate Object

def ReduceFn: (String, Obj) -> (Fact, List(String)){
all_cats = []; all_facts = []
for v in input.value(){

if (typeof(v) == Fact) {
all_facts.append(v)

} else {
all_cats.append(v.Category)

}
}
for f in all_facts { emit(f, all_cats); }

}

Categories
Category Entity

DIY Joins

30

def MapFn: (String, Obj) -> (String, Obj){
v = input.value()
if (typeof(v) == Fact) {

emit(v.Subject, v)
} else {

emit(v.Entity, v)
}

}

Facts
Subject Predicate Object

def ReduceFn: (String, Obj) -> (Fact, List(String)){
all_cats = []; all_facts = []
for v in input.value(){

if (typeof(v) == Fact) {
all_facts.append(v)

} else {
all_cats.append(v.Category)

}
}
for f in all_facts { emit(f, all_cats); }

}

Categories
Category Entity

DIY Joins

31

Multiple Reduce rounds

• Sometimes we may want to apply the shuffle
and reduce more than once

• This are referred as rounds
• The number of rounds is generally used to

characterize the complexity of a MapReduce
algorithm
– Local computations are fast
– Communications between machines are the

bottleneck

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 32

Exercise:

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 33

// enumerate occurrences of each word with count of 1
def MapFn1: String -> (String, Int) {

???
}
def ReduceFn1: (String, List(Int)) -> (String, Int) {

???
}
// sum the total counts of each word
def ReduceFn2: (String, List(Int)) -> (String, Int) {

???
}
// define your pipeline
def main() {

Table<String, String> table = read(table_path)
Table<String, Int> output =
table.MapFn1().ReduceFn1().ReduceFn2();
write(output)

}

• Given a collection of documents Find the number of
unique documents that each word occurs in

Solution

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 34

// enumerate occurrences of each word with count of 1
def MapFn1: (String, String) -> ((String, String), Int) {

for w in input.value().split(){
emit((input.key(), w), 1)

}
}

// eliminates multiple copies of the pair for each word-document pair
def ReduceFn1: ((String,String), List(Int)) -> (String, Int) {

emit(input.key()[1], 1)
}

// sum the total counts of each word
def ReduceFn2: (String, List(Int)) -> (String, Int) {

sum = 0
for (w, c) in input{

sum += c
}
emit(w, sum)

}

// define your pipeline
def main() {

Table<String, String> table = read(table_path)
Table<String, Int> output = table.MapFn1().MapFn2().ReduceFn()
write(output)

}

We just select one item from the list

Document id

In the second round each

Bonus Question

Do these two produce the same output?

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 35

This code just counts the number of
occurrences of the words in the documents

Multiple mapping rounds

We can also have multiple mapping rounds

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 36

Consider again the word count
problem
• We may first want to break

down the documents in
sentences (first map round)

• We then break down the
sentences in words (second
map round)

• The we aggregate in the
reduce round

No aggregation occurs
during MAP rounds!

How much can we parallelize?

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 37

Assume we have N documents.
• How much can we parallelize

the first map round?
• I.e., how many mappers can

we use at most?
a) 𝑁
b) √𝑁
c) Depends on the length

of the documents

• Potentially we could assign
every document to a single
machine!

How much can we parallelize?

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 38

Assume we in the first round we
generated M (DocID, Sent) pairs
of whom D are distincy
• How much can we parallelize

the second map round?
a) 𝑁
b) 𝑀
c) 𝐷
d) min{𝑁,𝑀}
e) 𝑀/𝐷
f) max{𝑁,𝑀}

• Potentially we could assign
(DocID, Sent) pair to a single
machine!

Mapping rounds implement naïve parallelism which is extremely scalable

How much can we parallelize?

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 39

Assume now there are W
distinct words in all of the
documents
• How much can we parallelize

the second map round?
• I.e., how many reducers can

we use at most?
a) 𝑁
b) 𝑀
c) W
d) D
e) min{𝐷,𝑊}
f) max{𝑊,𝐷}

• All pairs with the same key
(i.e., the same word) must be
processed by the same
reducer!

Quiz!

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 40

• Do these two workflows realize the same functionality?
• Yes!

• Which one is more likely to execute faster?
• In general, Workflow 1 is more parallelizable and likely to be faster!
• Still...not a clear answer!

• Communication between machines plays a role!
• More rounds more latency!

Workflow 1 Workflow 2
Small jobs:
• Easy

parallelization
• Easy load-

balancing
• Faster recovery

form failures

Complex jobs:
• Try to

decompose
nested loops
into multiple
mapping
steps

Example on Graph Manipulation

• Consider a directed graph described as an
adjacency list
– 𝑠!: 𝑑!, 𝑑", … , 𝑑#
– 𝑠": 𝑑!, 𝑑$, … , 𝑑%
– …
– 𝑠": 𝑑!, 𝑑$, … , 𝑑%

• Use MapReduce to construct the reverse graph
– Give the adjacency list of the graph in which all edges

are reversed

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 41

Excercise 2

• Let a market basket be a list of item purchased
– For simplicity assume there is at most one of an

item in the basket
• Given a large set of market baskets, find all

frequent pairs
– A pair is frequent if it appears in at least half of

the baskets
• Assume for simplicity that the number of baskets 𝑛 is

fixed and known to the reducers

• Try to find a fast implementation J

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 42

Ideas?

• Recall what we said about avoiding nested loops
and using multiple mapping rounds

• For the mapper:

• For the reducer:

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 43

Reading

• Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on Large Clusters
http://labs.google.com/papers/mapreduce.html

• Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The
Google File System

http://labs.google.com/papers/gfs.html

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 44

http://labs.google.com/papers/mapreduce.html

Conclusion

MapReduce allows to achieve:
• Fault tolerance: A machine or hard drive might crash.

– The MapReduce framework automatically re-runs failed tasks.
• Speed: Some machine might be slow because it's

overloaded.
– The framework can run multiple copies of a task and keep the

result of the one that finishes first.
• Network locality: Data transfer is expensive.

– The framework tries to schedule map tasks on the machines
that hold the data to be processed.

• Monitoring: Will my job finish before dinner?!?
– The framework provides a web-based interface describing jobs.

4/11/22 CS1951A - Data Science - Spring'22 - Lorenzo De Stefani 45

