CS131: Computer Vision: Foundations and Applications

Multi-view Geometry

Juan Carlos Niebles and Adrien Gaidon

Stanford University

Reference: Szeliski 11.3 \& 12.1, H\&Z ch. 9
Most slides adapted from S. Lazebnik, J. Johnson, D. Fouhey

The story so far

Model the 3D-to-2D camera projection: $\widetilde{\mathbf{X}}^{\mathrm{I}} \sim \mathbf{P} \widetilde{\mathbf{X}}^{\mathrm{W}}$ with $\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

Calibrate cameras (get $\mathbf{K}[\mathbf{R} \mid \mathbf{t}])$ from N 2D-3D correspondences ($\widetilde{\mathbf{x}}_{i}^{I}, \widetilde{\mathbf{X}}_{i}^{W}$)

- cast constraints (2D-3D correspondences) as a linear system A p $=\mathbf{0}$
- total least squares $\left(\operatorname{argmin}_{\mathbf{x}}\|\mathbf{A} \mathbf{p}\|^{2}\right.$ s.t. $\left.\|\mathbf{p}\|^{2}=1\right)$ gives the best approximation
- closed-form solution via the SVD of A (its last right singular vector) \& Cholesky
- refine by minimizing the 2 D reprojection error $\sum_{i}\left\|\operatorname{proj}\left(\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}_{\mathbf{i}} ; \boldsymbol{\kappa}\right)-\boldsymbol{x}_{\boldsymbol{i}}\right\|^{2}$

In general, we don't have 3D measurements...
... but more than 1 image!
What are the geometric constraints governing multiple views of the same scene?
\rightarrow 2D correspondences!

Get 3D structure \& motion from 2D correspondences

Correspondence estimation

Feature detection

Feature matching

Can use a wide range of features (cf. example in Project 1). More details in upcoming lectures by Juan Carlos

Get 3D structure \& motion from 2D correspondences

Why do we care about 3D reconstruction?

- Mapping, Localization, Navigation for Robots, Drones, Cars (cf. also visual SLAM)
- AR (e.g., Hololens) and VR (e.g., Oculus)
- Movies (special FX), Digital Preservation, "Photo Tourism", ...
- Software: COLMAP (SfM), orb-slam2 / g2o / gtsam (SLAM)
- Hot topic in industry \& academia (top category at CVPR)

Multi-view geometry problems

Multi-view geometry problems

What will we learn today?

Triangulation
Epipolar geometry

Stereo

Structure-from-Motion (SfM)

What will we learn today?

Triangulation
Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Triangulation

Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation

Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation

We want to intersect the two visual rays corresponding to x and x^{\prime} But do they always intersect exactly?
No! Noise in 2D matching or numerical errors

Triangulation: linear approach

Find the shortest segment connecting the two viewing rays Let \mathbf{X} be the midpoint of that segment: solve for \mathbf{X} !

As for calibration: constraints $\left(\mathbf{x} \sim \mathbf{P X}, \mathbf{x}^{\prime} \sim \mathbf{P}^{\prime} \mathbf{X}\right) \rightarrow \mathbf{A X}=\mathbf{0} \rightarrow$ SVD of \mathbf{A}

Triangulation: non-linear approach

Find \boldsymbol{X} that minimizes the 2 D reprojection errors

What will we learn today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Epipolar geometry setup

- Suppose we have two cameras with centers $\boldsymbol{O}, \boldsymbol{O}^{\prime}$
- The baseline is the line connecting the origins

Epipolar geometry setup

- Epipoles $\boldsymbol{e}, \boldsymbol{e}^{\prime}$ are where the baseline intersects the image planes
- Equivalently: epipoles are projections of the other camera in each view

Epipolar geometry setup

- Consider a point X, which projects to x and x^{\prime}

Epipolar geometry setup

- The plane formed by $\boldsymbol{X}, \boldsymbol{O}$, and \boldsymbol{O}^{\prime} is called an epipolar plane

Epipolar geometry setup

- Epipolar lines connect the epipoles to the projections of X
- Equivalently, they are intersections of the epipolar plane with the image planes, come in pairs (for x and x^{\prime})

Epipolar geometry setup: Summary

Epipolar constraint

- Suppose we observe a single point x in one image

Epipolar constraint

- Where can we find the x^{\prime} corresponding to x in the other image?

Epipolar constraint

- Where can we find the x^{\prime} corresponding to x in the other image?
- Along the epipolar line corresponding to x (projection of visual ray connecting O with x into the second image plane)

Epipolar constraint

- Similarly, all points in the left image corresponding to x^{\prime} have to lie along the epipolar line corresponding to x^{\prime}

Epipolar constraint

- Potential matches for x have to lie on the matching epipolar line l^{\prime} and viceversa \rightarrow need only to search along 1D epipolar line for matching!

Epipolar constraint

- Whenever two points x and x^{\prime} lie on matching epipolar lines l and l^{\prime}, the visual rays corresponding to them meet in space, i.e., x and x^{\prime} could be projections of the same 3D point X

Epipolar constraint

- Caveat: if x and x^{\prime} satisfy the epipolar constraint, this doesn't mean they have to be projections of the same 3D point

Epipolar constraint: Example

Epipolar Geometry \& Deep Learning

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022)
Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, Adrien Gaidon

Epipolar Geometry \& Deep Learning

Figure 1. Our DepthFormer architecture achieves state-of-the-art multi-frame self-supervised monocular depth estimation by improving feature matching across images during cost volume generation.

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022)
Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, Adrien Gaidon

The Epipolar Constraint as an Equation

$\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0$ where $\boldsymbol{F}=\boldsymbol{K}^{\prime-T} \boldsymbol{E} \boldsymbol{K}^{-1}$ is called the + Fundamental Matrix ${ }^{+t}$ [1] and $E=[t]_{\times} R$ is the Essential Matrix ${ }^{[2]}$

$$
\left(x^{\prime}, y^{\prime}, 1\right)\left[\begin{array}{ll}
f_{11} & f_{12}
\end{array} f_{13}\left(\begin{array}{ll}
f_{21} & f_{22}
\end{array} f_{23}\left(\begin{array}{l}
x \\
f_{31}
\end{array} f_{32} f_{33}\right] \begin{array}{l}
f_{33} \\
1
\end{array}\right)=0\right.
$$

[1] Faugeras et al., (1992), Hartley (1992)
(sketch of proof in appendix)
[2] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 1981

Estimating the fundamental matrix - teaser

- Given: correspondences $\boldsymbol{x}=(x, y, 1)^{T}$ and $x^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)^{T}$

Estimating the fundamental matrix - teaser

- Given: 2D correspondences $x=(x, y, 1)^{T}$ and $x^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)^{T}$
- Constraints: $\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0$ (1 per correspondence, how many needed?)
- Boils down to another homogeneous linear equation $\boldsymbol{A X}=\mathbf{0}$
- Recast once more into total least squares (Sz.A.2.1) due to noise
- SVD gives the solution as usual + enables enforcing rank 2 constraint by replacing smallest singular value with 0
- This "algebraic" algorithm is called "[normalized] 8-point algorithm" (R. Hartley. In defense of the eight-point algorithm. TPAMI 1997)
- As in calibration and homography fitting: non-linear "geometric" optimization (of reprojected distances) is more precise
- Can be made robust to outliers via the RANSAC algorithm
- See appendix, $\underline{H \& Z}$ ch. 9, Szeliski 11.3, or take CS231A for more!

From epipolar geometry to camera calibration

Estimating the fundamental matrix is known as "weak calibration" If we know the calibration matrices ($\mathrm{K}, \mathrm{K}^{\prime}$) of the two cameras, we can estimate the essential matrix: $\boldsymbol{E}=\boldsymbol{K}^{\prime T} \boldsymbol{F} \boldsymbol{K}$

The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters $\left(\mathrm{E}=[t]_{\times} R\right)$

Alternatively, if the calibration matrices are known (or in practice, if good initial guesses of the intrinsics are available), the five-point algorithm can be used to estimate relative camera pose

[^0]
What will we learn today?

Triangulation
Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Example configuration: Converging cameras

Example configuration: Converging cameras

- Epipoles are finite, may be visible in the image

Example configuration: Motion parallel to image plane

Where are the epipoles?
What do the epipolar lines look like?

Example configuration: Motion parallel to image plane

Epipoles infinitely far away!
Epipolar lines parallel: "scan lines"
\rightarrow Stereo = easier fronto-parallel special case!

History: Stereograms

Humans can fuse pairs of images to get a sensation of depth

[^1]
Depth from convergence

Stereo Matching for Depth Estimation

Given: stereo pair (assumed calibrated) Wanted: dense depth map

Basic stereo matching algorithm

For each pixel in the first image
Find corresponding epipolar line in the right image: same row!
Examine all pixels on the epipolar line and pick the best match
Triangulate the matches to get depth information
More details in appendix: rectification, matching, depth from disparity, etc

Stereo on the Perseverance Mars Rover

Mars 2020
SuperCam
(Remote Micro-Imager)

What will we learn today?

Triangulation
 Epipolar geometry

Stereo

Structure-from-Motion (SfM)

Reference: Szeliski 11, H\&Z ch. 9
Most slides adapted from N. Snavely \& S. Lazebnik

Structure-from-Motion

Given many images, how can we
a) figure out where they were all taken from?
b) build a 3D model of the scene?

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006. http://phototour.cs.washington.edu/

Geometry of more than two views?

2 views: governed by the 3×3 Fundamental Matrix (how to go from one point in an image to the epipolar line in the 2nd image)

3 views: governed by the $3 \times 3 \times 3$ Trifocal Tensor

4 views: governed by the $3 \times 3 \times 3 \times 3$ Quadrifocal Tensor

After this it starts to get complicated...
\rightarrow explicitly solve for camera poses and scene geometry

Large-scale structure-from-motion

Recall: Calibration

Camera 1
$\boldsymbol{K}_{1}, \boldsymbol{R}_{1}, \boldsymbol{t}_{1}$

$$
\begin{aligned}
& \text { Camera } 3 \\
& \boldsymbol{K}_{3}, \boldsymbol{R}_{3}, \boldsymbol{t}_{3}
\end{aligned}
$$

Camera 2
$\boldsymbol{K}_{2}, \boldsymbol{R}_{2}, \boldsymbol{t}_{2}$
?

Recall: Triangulation / Multi-view Stereo

Structure-from-Motion

Structure-from-Motion

Reconstruction (side)

- Input: images with 2D points $\boldsymbol{x}_{i j}$ in correspondence
- Output (solved simultaneously now!)
- structure: 3D location X_{j} for each point $x_{i j}$
- motion: camera parameters $\boldsymbol{R}_{i}, \boldsymbol{t}_{i}$ \& possibly \boldsymbol{K}_{i}
- Objective function: minimize reprojection error in 2D

Incremental Structure-from-Motion

- Initialize motion from two images using the fundamental matrix
- Initialize structure by triangulation
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration

Incremental Structure-from-Motion

- Initialize motion from two images using the fundamental matrix
- Initialize structure by triangulation
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute newly visible 3D points, re-optimize existing points that are also seen by this camera - triangulation

Incremental Structure-from-Motion

- Initialize motion from two images using the fundamental matrix
- Initialize structure by triangulation
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute newly visible 3D points, re-optimize existing points that are also seen by this camera - triangulation

- Refine all cameras \& points jointly: bundle adjustment

Bundle Adjustment

Non-linear method for refining structure $\left(\boldsymbol{X}_{j}\right)$ and motion $\left(\boldsymbol{P}_{i}\right)$ Minimize reprojection error (with lots of bells and whistles):

Incremental SfM in Practice

- Pick a pair of images with lots of inliers (and good EXIF data)
- Initialize intrinsic parameters (focal length, principal point) from EXIF
- Estimate extrinsic parameters (\boldsymbol{R} and \boldsymbol{t}) using five-point algorithm
- Use triangulation to initialize model points
- While remaining images exist
- Find an image with many feature matches with images in the model
- Run RANSAC on feature matches to register new image to model
- Triangulate new points
- Perform bundle adjustment to re-optimize everything
- Optionally, align with GPS from EXIF data or ground control points

Incremental structure from motion

COLMAP

Sparse model of central Rome using 21 K photos produced by COLMAP's SfM pipeline.

Dense models of several landmarks produced by COLMAP's MVS pipeline.

SfM in the age of Deep Learning

(b) Performance and efficiency comparison with other MVS approaches

ET-MVSNet: When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo (ICCV'23)
See also MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth (TMLR'23)

Supervising the new with the old: learning SFM from SFM

Maria Klodt ${ }^{[0000-0003-3015-9584]}$ and Andrea Vedaldi ${ }^{[0000-0003-1374-2858]}$

Visual Geometry Group, University of Oxford \{klodt, vedaldi\}@robots.ox.ac.uk

It

(b) proposed network architecture:
the depth and pose-uncertainty networks are supervised by traditional SfM.

Abstract

Recent work has demonstrated that it is possible to learn deep neural networks for monocular depth and ego-motion estimation from unlabelled video sequences, an interesting theoretical development with numerous advantages in applications. In this paper, we propose a number of improvements to these approaches. First, since such selfsupervised approaches are based on the brightness constancy assumption, which is valid only for a subset of pixels, we propose a probabilistic learning formulation where the network predicts distributions over variables rather than specific values. As these distributions are conditioned on the observed image, the network can learn which scene and object types are likely to violate the model assumptions, resulting in more robust learning. We also propose to build on dozens of years of experience in developing handcrafted structure-from-motion (SFM) algorithms. We do so by using an off-the-shelf SFM system to generate a supervisory signal for the deep neural network. While this signal is also noisy, we show that our probabilistic formulation can learn and account for the defects of SFM, helping to integrate different sources of information and boosting the overall performance of the network.

What did we learn today?

Triangulation

from calibrated cameras and 2D correspondences to 3D points

Epipolar geometry

Epipolar constraint,

$$
\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0
$$

Essential \& Fundamental matrices
Stereo (fronto-parallel special case)

Structure-from-Motion (SfM) (many images / video)

Note: this is just an introduction \rightarrow for more, take CS231a or get into HZ

Wrapping up Geometric Vision

Homogeneous Coordinates \& Projective Space
2D \& 3D Transforms as Matrix Multiplication
Pinhole Camera Model $P=K[R \mid t]$
Calibration from known 3D-to-2D correspondences
Multi-view geom: fundamental matrix, stereo, SfM

Appendix

Triangulation: Linear approach

$$
\begin{array}{rlrl}
\lambda x=P X & x \times P X=0 & & {[x]_{\times} P X=0} \\
\lambda^{\prime} x^{\prime}=P^{\prime} X & x^{\prime} \times P^{\prime} X=0 & & {\left[x^{\prime}\right]_{\times} P^{\prime} X=0}
\end{array}
$$

Rewrite cross product as matrix multiplication:

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=[\boldsymbol{a}]_{\times} \boldsymbol{b}
$$

2 independent equations per 2D point --> 4 equations in matrix form

$$
\mathbf{P}=\left[\begin{array}{c}
\boldsymbol{p}_{1}^{\top} \\
\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{3}^{\top}
\end{array}\right], \mathbf{A X}=\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top} \\
y^{\prime} \boldsymbol{p}_{3}^{\prime \top}-\boldsymbol{p}_{2}^{\prime \top} \\
\boldsymbol{p}_{1}^{\prime \top}-x^{\prime} \boldsymbol{p}_{3}^{\prime \top}
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right)=\mathbf{0} \quad \begin{gathered}
\text { Total Least Squares: } \\
\min _{\mathbf{X}}\|\mathbf{A X}\|^{2} \text { s.t. }\|\mathbf{X}\|^{2}=1 \\
\text { Solved via SVD! (Sz. A.2.1) }
\end{gathered}
$$

Bonus slides - Math of the Epipolar Constraint

Slides credit: S. Lazebnik

Math of the epipolar constraint: Calibrated case

- Assume the intrinsic and extrinsic parameters of the cameras are known, world coordinate system is set to that of the first camera
- Then the projection matrices are given by $\boldsymbol{P}=\boldsymbol{K}[\boldsymbol{I} \mid \mathbf{0}]$ and $\boldsymbol{P}^{\prime}=\boldsymbol{K}^{\prime}[\boldsymbol{R} \mid \boldsymbol{t}]$
- We can pre-multiply the projection matrices (and the image points) by the inverse calibration matrices to get normalized image coordinates:

$$
x_{\text {norm }}=K^{-1} x_{\text {pixel }} \sim[I \mid 0] X, \quad x_{\text {norm }}^{\prime}=K^{\prime-1} x_{\text {pixel }}^{\prime} \sim[R \mid t] X
$$

Math of the epipolar constraint: Calibrated case

- We have $\boldsymbol{x}^{\prime} \sim \boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$
- This means the three vectors $\boldsymbol{x}^{\prime}, \boldsymbol{R} \boldsymbol{x}$, and \boldsymbol{t} are linearly dependent
- This constraint can be written using the triple product

$$
\boldsymbol{x}^{\prime} \cdot[\boldsymbol{t} \times(\boldsymbol{R} \boldsymbol{x})]=0
$$

Math of the epipolar constraint: Calibrated case

Math of the epipolar constraint: Calibrated case

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature 293 (5828): 133-135, September 1981

The essential matrix

$$
\boldsymbol{x}^{\prime T} \boldsymbol{E} \boldsymbol{x}=0
$$

$$
\left(x^{\prime}, y^{\prime}, 1\right)\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
$$

Essential essential matrix properties

$$
\boldsymbol{x}^{\prime T} E x=0
$$

$E x$ is the epipolar line associated with $x\left(l^{\prime}=E x\right)$
Recall: a line is given by $a x+b y+c=0$ or $\boldsymbol{l}^{T} \boldsymbol{x}=0$ where $\boldsymbol{l}=(a, b, c)^{T}$ and $\boldsymbol{x}=(x, y, 1)^{T}$

Essential essential matrix properties

$$
x^{\prime T} E x=0
$$

- $E \boldsymbol{X}$ is the epipolar line associated with $\boldsymbol{x}\left(\boldsymbol{l}^{\prime}=\boldsymbol{E x}\right)$
- $\boldsymbol{E}^{T} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{l}=\boldsymbol{E}^{T} \boldsymbol{x}^{\prime}\right)$
- Epipoles are the null-spaces of $\mathrm{E}: E \boldsymbol{e}=\mathbf{0}$ and $\boldsymbol{E}^{\top} \boldsymbol{e}^{\prime}=\mathbf{0}$ (all epipolar lines pass through epipoles: $\forall \boldsymbol{x}, \boldsymbol{l}^{\prime \top} \boldsymbol{e}^{\prime}=\boldsymbol{x}^{\top} \boldsymbol{E}^{\top} \boldsymbol{e}^{\prime}=0 \Rightarrow \boldsymbol{E}^{\top} \boldsymbol{e}^{\prime}=\mathbf{0}$)
- \boldsymbol{E} is singular: rank 2 with 2 non-zero identical singular values
- E has 5 d.o.f. (3 for R, 3 for $t,-1$ for scale)

Epipolar constraint: Uncalibrated case

- What if we don't know the camera calibration matrices K and K^{\prime} ?
- Epipolar constraint in terms of unknown normalized coordinates:

$$
\begin{gathered}
\boldsymbol{x}_{\text {norm }}^{\prime T} \boldsymbol{E} \boldsymbol{x}_{\text {norm }}=0, \\
\text { where } \boldsymbol{x}_{\text {norm }}=\boldsymbol{K}^{-\mathbf{1}} \boldsymbol{x}, \boldsymbol{x}_{\text {norm }}^{\prime}=\boldsymbol{K}^{\prime-1} \boldsymbol{x}^{\prime}
\end{gathered}
$$

Epipolar constraint: Uncalibrated case

$$
\begin{aligned}
& \boldsymbol{x}_{\mathrm{norm}}^{\prime T} \boldsymbol{E} \boldsymbol{x}_{\mathrm{norm}}=0 \longmapsto \boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0, \text { where } \boldsymbol{F}=\boldsymbol{K}^{\prime-T} \boldsymbol{E} \boldsymbol{K}^{-1} \\
& \boldsymbol{x}_{\mathrm{norm}}=\boldsymbol{K}^{-1} \boldsymbol{x}
\end{aligned}
$$

$$
\boldsymbol{x}_{\text {norm }}^{\prime}=K^{\prime-1} x^{\prime}
$$

Fundamental Matrix

Fundamental fundamental matrix properties

$$
\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0
$$

Cf. $\mathrm{H} \mathrm{\& Z}$ ch. 9 for proofs

- $F x$ is the epipolar line associated with $x\left(l^{\prime}=F x\right)$
- $\boldsymbol{F}^{T} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{l}=\boldsymbol{F}^{T} \boldsymbol{x}^{\prime}\right)$
- $\boldsymbol{F e}=0$ and $\boldsymbol{F}^{\top} \boldsymbol{e}^{\prime}=0$ (can solve for epipoles via... SVD!)
- F is singular (rank 2)
- F has 7 d.o.f. (9 parameters, -1 for scale, -1 for singularity)

Estimating the fundamental matrix

- Given: correspondences $\boldsymbol{x}=(x, y, 1)^{T}$ and $\boldsymbol{x}^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)^{T}$
- Constraint: $\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0$

$$
\cdot\left(x^{\prime}, y^{\prime}, 1\right)\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
$$

The eight point algorithm

- Homogeneous least squares to find f :

$$
\arg \min _{\|\boldsymbol{f}\|=1}\|\boldsymbol{U} \boldsymbol{f}\|_{2}^{2} \longrightarrow \underset{\text { smallest eigenvalue }}{\text { Eigenvector of } \boldsymbol{U}^{T} \boldsymbol{U} \text { with }}
$$

Enforcing rank-2 constraint

- We know \boldsymbol{F} needs to be singular/rank 2. How do we force it to be singular?
- Solution: take SVD of the initial estimate and throw out the smallest singular value

$$
\begin{aligned}
& \boldsymbol{F}_{\text {init }}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \\
& \qquad \begin{array}{l}
\downarrow \\
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \boldsymbol{j}^{3}
\end{array}\right]
\end{array} \longrightarrow \boldsymbol{\Sigma}^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \boldsymbol{F}=\boldsymbol{U} \boldsymbol{\Sigma}^{\prime} \boldsymbol{V}^{T}
\end{aligned}
$$

Enforcing rank-2 constraint

Rank-2 estimate

Normalized eight point algorithm

- Recall that $x, y, x^{\prime}, y^{\prime}$ are pixel coordinates. What might be the order of magnitude of each column of \boldsymbol{U} ?
- This causes numerical instability!

The normalized eight-point algorithm

- In each image, center the set of points at the origin, and scale it so the mean squared distance between the origin and the points is 2 pixels
- Use the eight-point algorithm to compute \boldsymbol{F} from the normalized points
- Enforce the rank-2 constraint
- Transform fundamental matrix back to original units: if T and T^{\prime} are the normalizing transformations in the two images, then the fundamental matrix in original coordinates is $\boldsymbol{T}^{\prime T} \boldsymbol{F T}$

Nonlinear estimation

- Linear estimation minimizes the sum of squared algebraic distances between points $\boldsymbol{x}_{i}^{\prime}$ and epipolar lines $\boldsymbol{F} \boldsymbol{x}_{i}$ (or points \boldsymbol{x}_{i} and epipolar lines $\boldsymbol{F}^{T} \boldsymbol{x}_{i}^{\prime}$):
- $\sum_{i}\left(\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2}$
- Nonlinear approach: minimize sum of squared geometric distances
- $\sum_{i}\left[\operatorname{dist}\left(\boldsymbol{x}_{i}^{\prime}, \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2}+\operatorname{dist}\left(\boldsymbol{x}_{i}, \boldsymbol{F}^{T} \boldsymbol{x}_{i}^{\prime}\right)^{2}\right]$

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

Seven-point algorithm

- Set up least squares system with seven pairs of matches and solve for null space (two vectors) using SVD
- Solve for polynomial equation to get coefficients of linear combination of null space vectors that satisfies $\operatorname{det}(\boldsymbol{F})=0$

The Fundamental Matrix Song

Bonus slides - More on Stereo

History: Random dot stereograms

- Invented by Bela Julesz in the mid-20th century
- Demonstration that stereo perception can happen without any monocular cues

https://en.wikipedia.org/wiki/Random dot stereogram

Stereo image rectification

If the image planes are not parallel, we can find homographies to project each view onto a common plane parallel to the baseline

Stereo image rectification

If the image planes are not parallel, we can find homographies to project each view onto a common plane parallel to the baseline

Stereo image rectification

Before rectification:

Stereo image rectification

After rectification:

Another rectification example

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into horizontal scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Triangulate the matches to get depth information

Depth from disparity

$$
\begin{gathered}
\frac{x}{f}=\frac{B_{1}}{z} \quad \frac{-x^{\prime}}{f}=\frac{B_{2}}{z} \\
\frac{x-x^{\prime}}{f}=\frac{B_{1}+B_{2}}{z} \\
\underbrace{x-x^{\prime}}_{\text {Disparity }}=\frac{f B}{z}
\end{gathered}
$$

Disparity is inversely proportional to depth!

$$
z=\frac{f B}{x-x^{\prime}}
$$

Effect of baseline on stereo results

- Larger baseline
+ Smaller triangulation error
- Matching is more difficult

- Smaller baseline
- Higher triangulation error
+ Matching is easier

Problem for wide baselines: Foreshortening

- Matching with fixed-size windows will fail!
- Possible solution: adaptively vary window size
- Another solution: model-based stereo (CS231a)

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Compute disparity $x-x^{\prime}$ and set depth $(x)=B f /\left(x-x^{\prime}\right)$

The correspondence problem

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

How to find the best match?

- Compare pixels: sliding window + SSD or normalized cross-correlation

How to find the best match?

- Compare pixels: sliding window + SSD or normalized cross-correlation
- Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001)

How to find the best match?

- Compare pixels: sliding window + SSD or normalized cross-correlation
- Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001)
- Deep Learning: match learned representations, end-to-end estimation

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching, L. Lipson et al, arXiv 2021

SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation, Pillai et al, ICRA'19

Correspondences in the age of Deep Learning

LoFTR: Detector-Free Local Feature Matching with Transformers (CVPR'21) https://arxiv.org/abs/2104.00680v1

Correspondences in the age of Deep Learning

RoMa: Robust Dense Feature Matching

Johan Edstedt ${ }^{1}$ Qiyu Sun ${ }^{2} \quad$ Georg Bökman ${ }^{3} \quad$ Mårten Wadenbäck ${ }^{1} \quad$ Michael Felsberg ${ }^{1}$ ${ }^{1}$ Linköping University, ${ }^{2}$ East China University of Science and Technology, ${ }^{3}$ Chalmers University of Technology

RoMa: Robust Dense Feature Matching https://parskatt.github.io/RoMa/

How to find the best match?

- Compare pixels: sliding window + SSD or normalized cross-correlation
- Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001)
- Deep Learning: match learned representations, end-to-end estimation
- "Active stereo": project lasers or structured patterns (e.g., in IR)

L. Zhang, et al. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Bonus slides - SfM ambiguities

Slides credit: S. Lazebnik

Projective structure from motion

- Given: m images of n fixed 3D points such that (ignoring visibility):

$$
\boldsymbol{x}_{i j} \sim \boldsymbol{P}_{i} \boldsymbol{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \boldsymbol{P}_{i} and n 3D points \boldsymbol{X}_{j} from the $m n$ correspondences $\boldsymbol{x}_{i j}$

Is SFM always uniquely solvable?

Necker cube

Structure from motion ambiguity

If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points remain exactly the same:

$$
\boldsymbol{x} \sim \boldsymbol{P} \boldsymbol{X}=\left(\frac{1}{k} \boldsymbol{P}\right)(k \boldsymbol{X})
$$

Without a reference measurement, it is impossible to recover the absolute scale of the scene!
In general, if we transform the scene using a transformation \boldsymbol{Q} and apply the inverse transformation to the camera matrices, then the image observations do not change:

$$
x \sim P X=\left(P Q^{-1}\right)(Q X)
$$

Projective structure from motion

- Given: m images of n fixed 3D points such that (ignoring visibility):

$$
\boldsymbol{x}_{i j} \sim \boldsymbol{P}_{i} \boldsymbol{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \boldsymbol{P}_{i} and n 3D points \boldsymbol{X}_{j} from the $m n$ correspondences $\boldsymbol{x}_{i j}$
- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation \boldsymbol{Q} :

$$
X \rightarrow Q X, P \rightarrow P Q^{-1} \Rightarrow x \sim P X=P Q^{-1} Q X
$$

-We can solve for structure and motion when $2 m n \geq 11 m+3 n-15$

- Inequality above --> for $m=2$ cameras, need at least $n=7$ points
- Remember: \boldsymbol{F} has 7 d.o.f., not a coincidence!

Projective SFM: Two-camera case

1. Estimate fundamental matrix \boldsymbol{F} between the two views
2. Set first camera matrix to $[\mathbf{I} \mid 0]$
3. Then the second camera matrix is given by $[\boldsymbol{A} \mid \boldsymbol{t}]$ where \boldsymbol{t} is the epipole ($\boldsymbol{F}^{T} \boldsymbol{t}=\mathbf{0}$) and $\boldsymbol{A}=[\boldsymbol{t}]_{\times} \boldsymbol{F}$

Types of ambiguity

- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean

Projective ambiguity

With no constraints on the camera calibration matrices or on the scene, we can reconstruct up to a projective ambiguity:

$$
x \sim P X=\left(P Q^{-1}\right)(Q X)
$$

Q is a general full-rank 4×4 matrix

Projective ambiguity

Affine ambiguity

If we impose parallelism constraints, we can get a reconstruction up to an affine ambiguity:

$$
x \sim P X=\left(P Q_{A}^{-1}\right)\left(Q_{A} X\right)
$$

$$
\boldsymbol{Q}_{A}=\underset{\substack{\boldsymbol{A} \\
\mathbf{0}^{T}}}{\substack{\boldsymbol{t} \\
\text { full-rank } \\
\text { matrix }}} \begin{gathered}
\begin{array}{c}
3 \times 3 \\
\text { vector }
\end{array}
\end{gathered}
$$

Affine ambiguity

Similarity ambiguity

A reconstruction that obeys orthogonality constraints on camera parameters and/or scene

$$
\left.\begin{array}{l}
\boldsymbol{x} \sim \mathbf{P} X=\left(\boldsymbol{P Q}_{S}^{-\mathbf{1}}\right)\left(\boldsymbol{Q}_{S} \boldsymbol{X}\right) \\
3 \times 3 \quad 3 \times 1 \text { translation } \\
\text { rotation } \\
\text { matrix } \\
{ \boldsymbol { Q } _ { S } = { \boldsymbol { Q } _ { S } = \begin{array} { c c }
{ \boldsymbol { S } \boldsymbol { R } } & { \multirow {13} } { \boldsymbol { 0 } ^ { T } } } \\
\mathbf{o}^{2}
\end{array}\right] }
\end{array}
$$

Similarity ambiguity

[^0]: D. Nister. An efficient solution to the five-point relative pose problem. IEEE Trans. PAMI, 2004

[^1]: Stereograms: Invented by Sir Charles Wheatstone, 1838

