CS131: Computer Vision: Foundations and Applications

Multi-view Geometry

Juan Carlos Niebles and Adrien Gaidon

&) Stanford University

Reference: Szeliski 11.3 & 12.1, H&Z ch. 9
Most slides adapted from S. Lazebnik, J. Johnson, D. Fouhey



http://szeliski.org/Book/
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

The story so far

Model the 3D-to-2D camera projection: X' ~PX" with P = K[R|t]

Calibrate cameras (get K[R|t]) from N 2D-3D correspondences (X;, Xi )
- cast constraints (2D-3D correspondences) as a linear system Ap =0

- total least squares (argminy ||A pl|®s.t. ||pl|?* = 1) gives the best approximation

- closed-form solution via the SVD of A (its last right singular vector) & Cholesky

- refine by minimizing the 2D reprojection error Y ;||proj(K[R | t|X;; k) — x;||*



In general, we don’t have 3D measurements...

... but more than 1 image!

What are the geometric constraints governing

multiple views of the same scene?

—> 2D correspondences!



Get 3D structure & motion from 2D correspondences
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https://kornia.readthedocs.io/en/latest/applications/image matching.html



https://kornia.readthedocs.io/en/latest/applications/image_matching.html

Correspondence estimation

S - || -

‘ Feature detection

‘ Feature matching

° o
° o

Can use a wide range of features (cf. example in Project 1).
More details in upcoming lectures by Juan Carlos



Get 3D structure & motion from 2D correspondences

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845
downloaded from Flickr). 3.5M points!
Total reconstruction time: 17.5 hours on 352 cores

Building Rome in a Day, Agarwal et al, ICCV’09
http://grail.cs.washington.edu/rome



http://grail.cs.washington.edu/rome/

Why do we care about 3D reconstruction?

 Mapping, Localization, Navigation for Robots, Drones, Cars

(cf. also visual SLAM)

* AR (e.g., Hololens) and VR (e.g., Oculus)

* Movies (special FX), Digital Preservation, “Photo Tourism”, ...

» Software: COLMAP (SfM), orb-slam2 / g2o0 / gtsam (SLAM)

* Hot topic in industry & academia (top category at CVPR)


https://www.youtube.com/watch?v=imt2qZ7uw1s
https://www.youtube.com/watch?v=8DISRmsO2YQ
https://www.youtube.com/watch?v=BuRCJ2fegcc
https://www.youtube.com/watch?v=RdYWp70P_kY
http://phototour.cs.washington.edu/
https://colmap.github.io/
https://github.com/raulmur/ORB_SLAM2
https://github.com/RainerKuemmerle/g2o
https://github.com/borglab/gtsam

Multi-view geometry problems

Recovering structure:

Given known cameras and
estimated 2D correspondences,
find 3D points = Triangulation

Camera 1 \
Camera 2 \
Rlatl

Camera 3

Ryt, \ Rt

Slide credit:
Noah Snavely



Multi-view geometry problems

Motion:

Figure out R, t for a set of
cameras given estimated

2D correspondences

\ .
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Camera 1 ‘)

Camera 2 Camera 3
Rlatl ¢ R29t2 ? ? R39t3

Slide credit:
Noah Snavely



What will we learn today?

Triangulation

—pipolar geometry
Stereo

Structure-from-Motion (SfM)
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—pipolar geometry
Stereo

Structure-from-Motion (SfM)



Triangulation

Given projections of a 3D point in two or more images (with
known camera matrices), find the coordinates of the point




Triangulation

Given projections of a 3D point in two or more images (with
known camera matrices), find the coordinates of the point




Triangulation

We want to intersect the two visual rays corresponding to x and x’
But do they always intersect exactly?
No! Noise in 2D matching or numerical errors




Triangulation: linear approach

Find the shortest segment connecting the two viewing rays
Let X be the midpoint of that segment: solve for X!

AN
T _— what is A?

(answer in appendix)

0 o'

As for calibration: constraints (x~PX, x'~P'X) > AX=0-> SVD of A



Triangulation: non-linear approach

Find X that minimizes the 2D reprojection errors

|proj(PX) — x||* + ||proj(P'X) — x'||*




What will we learn today?

Triangulation

—pipolar geometry
Stereo

Structure-from-Motion (SfM)



Epipolar geometry setup

0‘ T~ — 0’

* Suppose we have two cameras with centers O, O’
e The is the line connecting the origins



Epipolar geometry setup
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* Epipoles e, e’ are where the baseline intersects the image planes
* Equivalently: epipoles are projections of the other camera in each view




Epipolar geometry setup
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* Consider a point X, which projects to x and x’



Epipolar geometry setup
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* The plane formed by X, 0, and O’ is called an



Epipolar geometry setup

X

0 Y

e

* Epipolar lines connect the epipoles to the projections of X
* Equivalently, they are intersections of the epipolar plane with the
image planes, come in pairs (for x and x’)




Epipolar geometry setup: Summary

Epipolar plane

Epipolar lines

Baseline

Epipoles



Epipolar constraint

o

* Suppose we observe a single point x in one image



Epipolar constraint

\ﬁ /O/
X § -

* Where can we find the x’ corresponding to x in the other image?




Epipolar constraint
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* Where can we find the x’ corresponding to x in the other image?
* Along the epipolar line corresponding to x (projection of visual ray
connecting O with x into the second image plane)



Epipolar constraint

h X

\\
o

e

* Similarly, all points in the left image corresponding to x’ have to lie
along the epipolar line corresponding to x'



Epipolar constraint

X ‘x
[ '
- e,
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* Potential matches for x have to lie on the matching epipolar line I and vice-
versa =2 need only to search along 1D epipolar line for matching!



Epipolar constraint

0 > A 0’

* Whenever two points x and x’ lie on matching epipolar lines [ and [, the
visual rays corresponding to them meet in space, i.e., x and x' could be
projections of the same 3D point X



Epipolar constraint
XI

X

1\

T
0 e

« Caveat: if x and x' satisfy the epipolar constraint, this doesn’t mean they
have to be projections of the same 3D point



Epipolar constraint: Example




Epipolar Geometry & Deep Learning

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022)
Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, Adrien Gaidon



https://arxiv.org/abs/2204.07616

Epipolar Geometry & Deep Learning

Context Image Multi-frame encoder DepthFormer

Depth

Cross-attention decoder

Y matching

SN
fl' L;‘,‘f. \\\
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: : Cross-attention
Epipolar Sampling I , cost volume

MAA

v

Single-frame encoder ﬁﬁ j

Predicted target depth map

Reconstructed pointcloud

Figure 1. Our DepthFormer architecture achieves state-of-the-art multi-frame self-supervised monocular depth estimation by improving

feature matching across images during cost volume generation.

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022)

Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, Adrien Gaidon


https://arxiv.org/abs/2204.07616

The Epipolar Constraint as an Equation

xX'TFx = Owhere F = K'""TEK 'is called the  Fundamental Matrix =~ [l

fir fiz fiz] x
fo1 faz fa3 <Y> =0
far fzz fzz] 1

and E = [t]| R is the Essential Matrix [2] CHS ARy

[1] Faugeras et al., (1992), Hartley (1992) (sketch of proof in appendix)

[2] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 1981



https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)

Estimating the fundamental matrix - teaser

 Given: correspondences x = (x,y,1)" and x' = (x,y', DT




Estimating the fundamental matrix - teaser

 Given: 2D correspondences x = (x,y, )" and x’ = («',y', 1)

« Constraints: x’"Fx = 0 (1 per correspondence, how many needed?)
 Bolls down to another homogeneous linear equation AX = 0

* Recast once more into total least squares (5z.A.2.1) due to noise

 SVD gives the solution as usual + enables enforcing rank 2
constraint by replacing smallest singular value with 0

* This “algebraic” algorithm is called “[normalized] 8-point algorithm”
(R. Hartley. In defense of the eight-point algorithm. TPAMI 1997)

 As in calibration and homography fitting: non-linear “geometric”
optimization (of reprojected distances) is more precise

 (Can be made robust to outliers via the RANSAC algorithm
e See appendix, H&Z ch. 9, Szeliski 11.3, or take C5§231A for more!



http://szeliski.org/Book/
https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf
http://szeliski.org/Book/

From epipolar geometry to camera calibration

Estimating the fundamental matrix 1s known as “weak calibration”

If we know the calibration matrices (K, K') of the two cameras,

we can estimate the essential matrix. E = K''FK

The essential matrix gives us the relative rotation and translation

between the cameras, or their extrinsic parameters (E = [t|«R)

Alternatively, if the calibration matrices are known (or in practice, if
good initial guesses of the intrinsics are available), the five-point

algorithm can be used to estimate relative camera pose

D. Nister. An efficient solution to the five-point relative pose problem. IEEE Trans. PAMI, 2004



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1518&rep=rep1&type=pdf

What will we learn today?

Triangulation

—pipolar geometry
Stereo

Structure-from-Motion (SfM)



Example configuration: Converging cameras
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Image Credit: Hartley & Zisserman



Example configuration: Converging cameras

* Epipoles are finite, may be visible in the image



Example configuration: Motion parallel to image plane

o O’

Where are the epipoles?
What do the epipolar lines look like?



Example configuration: Motion parallel to image plane

€ ®

o O’

Epipoles infinitely far away!
Epipolar lines parallel: "scan lines"
— Stereo = easier fronto-parallel special case!




History: Stereograms

Humans can fuse pairs of images to get a sensation of depth
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Stereograms: Invented by Sir Charles Wheatstone, 1838
https://en.wikipedia.org/wiki/Stereoscopy



https://en.wikipedia.org/wiki/Stereoscopy

Depth from convergence

C a_. a —
A =7 Large Angie Small Angle
=> Close => Far
e d.
’ d, -
C
d =
2tan(a/2)

Slide credit: J. Hayes



Stereo Matching for Depth Estimation

Given: stereo pair (assumed calibrated)
Wanted: dense depth map




Basic stereo matching algorithm

F=="" HON. ABRAIAM LINCOLN, President of United States. -‘-'-:.—
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For each pixel in the first image
Find corresponding epipolar line in the right image: same row!
Examine all pixels on the epipolar line and pick the best match

Triangulate the matches to get depth information

More details in appendix: rectification, matching, depth from disparity, etc



Stereo on the Perseverance Mars Rover

M ars 2 O 2 O (Remo?:pliltlaigcr:c?-[rmager)

Mastcam-Z Mastcam-Z

Naveam SHERLOC

(WATSON)

x: 5 ; \ - el & . ) "' :
Rear Hazcams \§ =9 - OiSFsssl lrel o oo i 2. B PIXL
\Q': ¢ i, L A ol A2 (Micro-Context Camera)

Front Hazcams Total cameras: 23

Engineering cameras: 9
Science cameras: 7
Entry, descent and landing cameras: 7

https://mars.nasa.gov/mars2020/spacecraft/rover/cameras/



https://mars.nasa.gov/mars2020/spacecraft/rover/cameras/

What will we learn today?

Triangulation

—pipolar geometry
Stereo

Structure-from-Motion (SfM)

Reference: Szeliski 11, H&Z ch. 9
Most slides adapted from N. Snavely & S. Lazebnik



http://szeliski.org/Book/
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

Structure-from-Motion

Given many images, how can we

a) figure out where they were all taken from?
b) build a 3D model of the scene?

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006.
http://phototour.cs.washington.edu/



http://phototour.cs.washington.edu/
http://phototour.cs.washington.edu/

Geometry of more than two views?

2 views: governed by the 3x3 Fundamental Matrix (how to go
from one point in an image to the epipolar line in the 2nd image)

3 views: governed by the 3 x 3 x 3 Trifocal Tensor
4 views: governed by the 3 x 3 x 3 x 3 Quadrifocal Tensor

After this i1t starts to get complicated...

- explicitly solve for camera poses and scene geometry



Large-scale structure-from-motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845
downloaded from Flickr). 3.5M points!
Total reconstruction time: 17.5 hours on 352 cores

Building Rome in a Day, Agarwal et al, ICCV’09
http://grail.cs.washington.edu/rome



http://grail.cs.washington.edu/rome/

Recall: Calibration
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Recall: Triangulation / Multi-view Stereo

Y
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Camera 3
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Structure-from-Motion
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Structure-from-Motion
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* |Input: images with 2D points X;;in correspondence

* Output (solved simultaneously now!)
* structure: 3D location X, for each point x;;

* motion: camera parameters R;, t; & possibly K.

* Objective function: minimize reprojection error in 2D



Incremental Structure-from-Motion

* [nitialize motion from two images
using the fundamental matrix

* [nitialize structure by triangulation

points
* For each additional view: T '
* Determine projection matrix of new oo v
. . N ® ®© & ® & & o 0o
camera using all the known 3D points S| leeoeeess
that are visible in its image — calibration C|l|(e0eeecece
© ® ® & & & & 0o 0
© ® ® & & & ® 0 0
® ®© & ® & & ¢ o o
- 0 —0—0—0—0— 0 0 ¢




Incremental Structure-from-Motion

* [nitialize motion from two images
using the fundamental matrix

* [nitialize structure by triangulation

 For each additional view:

* Determine projection matrix of new
camera using all the known 3D points
that are visible In 1ts image — calibration

* Refine and extend structure: compute
newly visible 3D points, re-optimize
existing points that are also seen by this
camera — triangulation

cameras

points

v

® 00—



Incremental Structure-from-Motion

* [nitialize motion from two images
using the fundamental matrix

* [nitialize structure by triangulation ooints

v

 For each additional view:

* Determine projection matrix of new
camera using all the known 3D points
that are visible In 1ts image — calibration

* Refine and extend structure: compute
newly visible 3D points, re-optimize
existing points that are also seen by this

cameras
® o000 0 00
® o 00 0 0 00
® o0 0 0 0 0 00
® o0 00 0 0 00
® 0 0 0 0 0 00
® o0 0 00 0 00

v

camera — triangulation

* Refine all cameras & points jointly: bundle adjustment



Bundle Adjustment

Non-linear method for refining structure (X;) and motion (P;)
Minimize reprojection error (with lots of bells and whistles):

visibility flag: is
point j visible in
view (?

B. Triggs et al. Bundle adjustment — A modern synthesis. International Workshop on Vision Algorithms, 1999



https://hal.inria.fr/inria-00548290/document

Incremental SfM in Practice

 Pick a pair of images with lots of inliers (and good EXIF data)
* Initialize intrinsic parameters (focal length, principal point) from EXIF

« Estimate extrinsic parameters (R and t) using five-point algorithm

e Use triangulation to initialize model points

* While remaining images exist

 Find an image with many feature matches with images in the model

Run RANSAC on feature matches to register new image to model

Triangulate new points

Perform bundle adjustment to re-optimize everything

Optionally, align with GPS from EXIF data or ground control points


https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf

Incremental structure from motion

Time-lapse reconstruction of Dubrovnik, Croatia, viewed from above
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Sparse model of cehtral Rome usin

g 21K photds préduced by COLMAP’s SfM pipeline.

https://colmap.github.io/



https://colmap.github.io/

Advanced F-scores A

SfM in the
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ET-MVSNet: When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo (ICCV'23)

See also MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth (TMLR'23)



https://github.com/tqtqliu/et-mvsnet
https://maybelx.github.io/MVSFormer.github.io/

Supervising the new with the old: learning SFM from SFM

U-net j==d depth
camera

Maria Klodt[0000-0003—3015—9584] 514 Andrea Vedaldi[0000—0003—1374—2858]

Visual Geometry Group, University of Oxford
{klodt,vedaldi}@robots.ox.ac.uk

Abstract. Recent work has demonstrated that it is possible to learn
deep neural networks for monocular depth and ego-motion estimation
from unlabelled video sequences, an interesting theoretical development

with numerous advantages in applications. In this paper, we propose
a number of improvements to these approaches. First, since such self-

-net Uncer- 0SS

supervised approaches are based on the brightness constancy assump- tainties

tion, which is valid only for a subset of pixels, we propose a probabilistic
learning formulation where the network predicts distributions over vari-
ables rather than specific values. As these distributions are conditioned
on the observed image, the network can learn which scene and object
types are likely to violate the model assumptions, resulting in more ro-
bust learning. We also propose to build on dozens of years of experience
in developing handcrafted structure-from-motion (SFM) algorithms. We

StM

(b) proposed network architecture:

do so by using an off-the-shelf SFM system to generate a supervisory the depth and pose-uncert ainty networks
signal for the deep neural network. While this signal is also noisy, we . ..
show that our probabilistic formulation can learn and account for the are SupeerSGd by traditional SfM

defects of SFM, helping to integrate different sources of information and
boosting the overall performance of the network.

https://openaccess.thecvf.com/content ECCV 2018/papers/Maria Klodt Supervising the new ECCV 2018 paper.pdf



https://openaccess.thecvf.com/content_ECCV_2018/papers/Maria_Klodt_Supervising_the_new_ECCV_2018_paper.pdf

What did we learn today?

rlangulation

from calibrated cameras and 2D correspondences to 3D points

Epipolar geometry

| | xTFx =0
Epipolar constraint,

Essential & Fundamental matrices

Stereo (fronto-parallel special case)
Structure-from-Motion (SfM) (many images / video)

Multiple View
Geometry
in computer vision

Note: this is just an introduction =2 for more, take C5231a or get into HZ




Wrapping up Geometric Vision

Homogeneous Coordinates & Projective Space

2D & 3D Transforms as Matrix Multiplication
Pinhole Camera Model P=K[R]|t]

Calibration from known 3D-to-2D correspondences

Multi-view geom: fundamental matrix, stereo, STM



Appendix



Triangulation: Linear approach

Ax = PX xXPX=0 x|, PX =0
Vx' =P'X x'X P'X =0 [x'].P'X =0

Rewrite cross product as matrix multiplication:
i O _a3 az | b1
axb =| a; 0 —aq (b2> = |a]«b

__az a1 O i

2 independent equations per 2D point --> 4 equations in matrix form

_ T T -
I’ YIT73 p$ X Total Least Squares:
p— || aAx = | P1 ~ *P3 Y —0 in||AX]||? X[|“ =1
— Pz ) — 11T I'T / - mln” ” S- 1 ” ” a
T YP3 — P2 sX| d via SVD! (Sz. A.2.1
D3 : Fon! ST
-P1T _XPST— W NS 7 )



Bonus slides - Math of the Epipolar Constraint



Math of the epipolar constraint: Calibrated case
X

t

\Il/y

e Assume the Intrinsic and extrinsic parameters of the cameras are known,
world coordinate system is set to that of the first camera

e Then the projection matrices are given by P = K[I | 0] and P = K'[R | t]

e \We can pre-multiply the projection matrices (and the image points) by the
iInverse calibration matrices to get normalized image coordinates:

Xnorm = K_lxpierN[I | 0]X, X' norm = K’_lx;ierN[R | t]X




Math of the epipolar constraint: Calibrated case

Xnorm~ I | 0]1X
X
[110] (3

)

X =(x 17
W

A B

—~—n

We have xX'~Rx + t

x' - [tx(Rx)] =0

X' norm~[R | t]X

R1e(3)
= Rx+t

his means the three vectors x', Rx, and t are linearly dependent
his constraint can be written using the triple product

A

axb
b axb
/4 | /
a




Math of the epipolar constraint: Calibrated case

w
o (ch) Xx t ); < ’ llfet] -(l-xt
= Rx

\&/’

x'-[tx(Rx)] =0 mmy x'T[t]yRx =0

0 —a; a,1/by
Recall: axb = | as 0 —a, (bz) = [a]b
__az Cl1 O i




Math of the epipolar constraint: Calibrated case

110 (7) X | X [R Lt] Q
X 2{ = Rx
R

—~—n

x' - [tx(Rx)] =0 mmy x7[t]luRx=0 mm) xTEx=0
5 B

E = [t],R  Essential Matrix

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature
293 (5828): 133-135, September 1981



https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

The essential matrix
\AX/

€11 €12 €13] /X
(x',y',1)|€21 €22 €23 (y) =0

€31 €32 €33




Essential essential matrix properties
X

>
e
0,

Ex is the epipolar line associated with x (I' = Ex)

Recall: a lineis givenbyax + by + ¢ = Oorlfx =0
wherel = (a,b,c)’ andx = (x,y, 1)’



Essential essential matrix properties
X

o Ex isthe epipolar line associated with x (I’ = Ex)
o E"x'isthe epipolar line associated with x’ (I = E"x')

e Epipoles are the null-spacesof E: Ee =0 and E'e' =0
(all epipolar lines pass through epipoles: Vx, I''e’ = x"E'e’ =0= E"e' = 0)
e FEissingular: rank 2 with 2 non-zero identical singular values

e Fhas5d.of (3forR, 3fort, -1 for scale) Cf. H&Z ch. 9 for proofs


https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

Epipolar constraint: Uncalibrated case
X

e \What if we don’t know the camera calibration matrices K and K'?
e Epipolar constraint in terms of unknown normalized coordinates:
xnormExnorm =0,



Epipolar constraint: Uncalibrated case
X

normExnorm

=0 mm) x'"Fx=0,whereF =K TEK'

: ]

Fundamental Matrix

— -1
anI‘m T K X
/ _ r—1 .7
X norm - K X

Faugeras et al., (1992), Hartley (1992)



https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)

Fundamental fundamental matrix properties

X Cf. H&Z ch. 9 for proofs

>
e
0,

e Fx isthe epipolar line associated with x (I' = Fx)

o F'x'isthe epipolar line associated with x’ (I = F'x")

e« Fe=0 and F'e' = 0 (can solve for epipoles via... SVD!)
e Fissingular (rank 2)

e F has 7 d.o.f. (9 parameters, -1 for scale, -1 for singularity)


https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

Estimating the fundamental matrix

« Given: correspondences x = (x,y, 1) and x' = (x,y', 1)

e Constraint: xX’TFx =0
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The eight point algorithm
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 Homogeneous least squares to find f:
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Enforcing rank-2 constraint

* We know F needs to be singular/rank 2. How do we force it to
be singular?

 Solution: take SVD of the initial estimate and throw out the
smallest singular value

Finit = UXV"
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Enforcing rank-2 constraint

Initial F estimate Rank-2 estimate




Normalized eight point algorithm
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* Recall that x,y,x’,y" are pixel coordinates. What might be the

order of magnitude of each column of U~?

 [his causes numerical instability!



The normalized eight-point algorithm

e [n each image, center the set of points at the origin, and scale i1t
so the mean squared distance between the origin and the points Is
2 pixels

e Use the eight-point algorithm to compute F from the normalized
points

e Enforce the rank-2 constraint

e Transform fundamental matrix back to original units: if T and T’
are the normalizing transformations in the two images,
then the fundamental matrix in original coordinates is T'TFT

R. Hartley. In defense of the eight-point algorithm. TPAMI 1997



https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf

Nonlinear estimation

e Linear estimation minimizes the sum of squared algebraic
distances between points x; and epipolar lines Fx; (or points x;
and epipolar lines F'x}):

, 2
'Zi(xiTin)

e Nonlinear approach: minimize sum of squared geometric distances
« ¥.[dist(x;, Fx,)* + dist(x;, F" x})*]




Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel




Seven-point algorithm

 Set up least squares system with seven pairs of matches and
solve for null space (two vectors) using SVD

* Solve for polynomial equation to get coefficients of linear
combination of null space vectors that satisfies det(F) = 0

Source: e.g., M. Pollefeys tutorial (2000)



http://cmp.felk.cvut.cz/cmp/courses/dzo/resources/tutorial-pollefeys-eccv/node57.html

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/



http://danielwedge.com/fmatrix/

Bonus slides - More on Stereo



History: Random dot stereograms

* Invented by Bela Julesz in the mid-20th century

 Demonstration that stereo perception can happen without any
monocular cues
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https://en.wikipedia.org/wiki/Random dot stereogram



https://en.wikipedia.org/wiki/B%C3%A9la_Julesz
https://en.wikipedia.org/wiki/Random_dot_stereogram

Stereo image rectification

If the image planes are not
parallel, we can find
homographies to project each
view onto a common plane

parallel to the baseline A,

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999



http://dev.ipol.im/~morel/Dossier_MVA_2011_Cours_Transparents_Documents/2011_Cours7_Document2_Loop-Zhang-CVPR1999.pdf

Stereo image rectification

If the image planes are not
parallel, we can find

homographies to project each \
view onto a common plane
parallel to the baseline A,

~
~
~
~

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999



http://dev.ipol.im/~morel/Dossier_MVA_2011_Cours_Transparents_Documents/2011_Cours7_Document2_Loop-Zhang-CVPR1999.pdf

Stereo image rectification

Before rectification:

Image source



https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/medoc.ustuttgart_fi/DIP-2016-11/DIP-2016-11.pdf

Stereo image rectification

After rectification:

age source



https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/medoc.ustuttgart_fi/DIP-2016-11/DIP-2016-11.pdf

Another rectification example

Unrectified

Rectified




Basic stereo matching algorithm

F=S"HON. ABRAIIAM LINCOLN, President of United States. LT
{
. ij

e [f necessary, rectify the two stereo images to transform
epipolar lines into horizontal scanlines
e For each pixel x In the first image
* Find corresponding epipolar scanline in the right image

« Examine all pixels on the scanline and pick the best match x'
e Triangulate the matches to get depth information



Depth from disparity

X
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. L . B
Disparity is inversely proportional to depth! zZ = ,



Effect of baseline on stereo results

4 N\

e Larger baseline e Smaller baseline

+ Smaller triangulation error — Higher triangulation error
— Matching is more difficult + Matching is easier



Problem for wide baselines: Foreshortening

! T
« Matching with fixed-size windows will fail!

« Possible solution: adaptively vary window size
« Another solution: model-based stereo (CS231a)

Slide credit: J. Hayes



Basic stereo matching algorithm

TS HON. ABRAIIAM LINCOLN, President of United States. -‘-'-p!—
{
o ij

e |[f necessary, rectify the two stereo images to transform
epipolar lines into scanlines

e For each pixel x in the first image
* Find corresponding epipolar scanline in the right image
« Examine all pixels on the scanline and pick the best match x'

« Compute disparity x — x" and set depth(x) = Bf/(x — x’



The correspondence problem
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How to find the best match?

 Compare pixels: sliding window + SSD or normalized cross-correlation

Left Right

scanline

Matching cost h
/\/\{ disparity




How to find the best match?

 Compare pixels: sliding window + SSD or normalized cross-correlation

* Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast
Approximate Energy Minimization via Graph Cuts, PAMI 2001)

Global optimization
Data Ground truth Window-based matching method (graph cuts)
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http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

How to find the best match?

 Compare pixels: sliding window + SSD or normalized cross-correlation

 Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast
Approximate Energy Minimization via Graph Cuts, PAMI 2001)
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Context Encoder

RAFT-Stereo: Multilevel Recurrent Field Transforms SuperDepth: Self-Supervised, Super-Resolved
for Stereo Matching, L. Lipson et al, arXiv 2021 Monocular Depth Estimation, Pillai et al, ICRA’19



http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
https://arxiv.org/abs/2109.07547
https://arxiv.org/abs/2109.07547
https://arxiv.org/abs/1810.01849
https://arxiv.org/abs/1810.01849

Correspondences in the age of Deep Learning

1. Local Feature CNN 4. Coarse-to-Fine Module
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LoFTR: Detector-Free Local Feature Matching with Transformers (CVPR'21) https://arxiv.org/abs/2104.00680v1



https://arxiv.org/abs/2104.00680v1

Correspondences in the age of Deep Learning

11 Dec 2023

RoMa: Robust Dense Feature Matching

Johan Edstedt! Qiyu Sun? Georg Bokman® Mérten Wadenbéick!  Michael Felsberg!
!Link6ping University, 2East China University of Science and Technology, Chalmers University of Technology

Coarse feature encoder F. a0 Match Decoder Dy (s514) ) Coarse 1oss Lcoarse
Pcoarse \T™ | L7 ), Peoarse \ T
X Finetune or from scratch — X ConvNet 1 . A L2 regression
Vs VS —> LK fhets —<- VS
« Frozen Foundation Model % = « Transformer ¥ L « Regression-by-classification
Fine feature encoder Fye, P (@5124), pane (@) Fine loss Lfine
fine\L | s Pfine\
X Shared with coarse encoder 4 A ¥ Clipped L2 regression
Vs Warp Refiners Ry —, A0 SEs S \&
«/ Specialized fine encoder M « Robust regression

-

RoMa: Robust Dense Feature Matching https://parskatt.github.io/RoMa/



https://parskatt.github.io/RoMa/

How to find the best match?

 Compare pixels: sliding window + SSD or normalized cross-correlation

 Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast
Approximate Energy Minimization via Graph Cuts, PAMI 2001)

 Deep Learning: match learned representations, end-to-end estimation
 “Active stereo”: project lasers or structured patterns (e.g., in IR)

camera

[+

projector

\\\\\\\\\\\\\\\\\\\\\\\\\

https://www.cnet.com/news/apple-face-id-truedi

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/



http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://grail.cs.washington.edu/projects/moscan/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
https://www.cnet.com/news/apple-face-id-truedepth-how-it-works/

Bonus slides - StM ambiguities



Projective structure from motion

e Given: m images of n fixed 3D points such that (ignoring visibility):

xijNPl'Xj, l — 1, , 1M, ] — 1, , N

e Problem: estimate m projection matrices P; and n 3D points X; from
the mn correspondences x;; X




Is SFM always uniquely solvable?

Necker cube

Source: N. Snavely


http://en.wikipedia.org/wiki/Necker_cube

Structure from motion ambiguity

If we scale the entire scene by some factor k and, at the same
time, scale the camera matrices by the factor of 1/k, the
projections of the scene points remain exactly the same:

x~PX = (% P) (kX)

Without a reference measurement, 1t I1s impossible to recover the
absolute scale of the scenel

In general, If we transform the scene using a transformation Q and
apply the inverse transformation to the camera matrices, then the
Image observations do not change:

x~PX = (PQ™1)(QX)



Projective structure from motion

e Given: m images of n fixed 3D points such that (ignoring visibility):

xijNPl'Xj, l — 1, , 1M, ] — 1, , N

e Problem: estimate m projection matrices P; and n 3D points X; from
the mn correspondences x;;

e \With no calibration info, cameras and points can only be recovered up
to a 4X4 projective transformation Q:
X - QX,P - PQ '=x~PX=PQ 10X

e \Ve can solve for structure and motion when 2mn = 11m + 3n — 15
e [nequality above --> for m = 2 cameras, need at least n = 7 points
e Remember: F has 7 d.o.f., not a coincidence!



Projective SFM: Two-camera case

1. Estimate fundamental matrix F between the two views

2. Set first camera matrix to [I'| 0]

3. Then the second camera matrix is given by [A | t] where t Is the
epipole (F't = 0) and A = [t] F

For derivation: cf. CS231A or H&Z Chap.9 result 9.9



H&Z%20ch.%209

Types of ambiguity

Projective A t Preserves intersection and
15dof T tangency

_V 1%
Affine At Preserves parallellism,
12dof 0" 1 volume ratios
Similarity sR t Preserves angles, ratios of
7dof o7 1 length
Euclidean R t
6dof : Preserves angles, lengths

0 1

e \Vith no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction

e Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean



Projective ambiqguity

With no constraints on the camera calibration matrices or on the
scene, we can reconstruct up to a projective ambiguity:

x~PX = (PQ™)(QX)

Q is a general full-rank 4 X4 matrix




rojective ambiguity




Affine ambiguity

If we impose parallelism constraints, we can get a reconstruction up
to an affine ambiguity:

x~PX = (PQ;")(Q4X)

3%X3 3X%X1 translation
full-rank vector
matrix

2 =[gr 1]




Affine ambiguity




Similarity ambiguity

A reconstruction that obeys orthogonality constraints on camera
parameters and/or scene

x~PX = (P Qs 1) (QsX) <\
2o, AN
matrix
S
Qs = f)T 1] —




Similarity ambiguity




