
CS131: Computer Vision: Foundations and Applications

Multi-view Geometry
Juan Carlos Niebles and Adrien Gaidon

Reference: Szeliski 11.3 & 12.1, H&Z ch. 9
Most slides adapted from S. Lazebnik, J. Johnson, D. Fouhey

http://szeliski.org/Book/
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf


The story so far

Model the 3D-to-2D camera projection: !𝐱!~𝐏%𝐗" with 𝐏 = 𝐊[𝐑|𝐭]

Calibrate cameras (get 𝐊[𝐑|𝐭]) from N 2D-3D correspondences (!𝐱#!, %𝐗#")

- cast constraints (2D-3D correspondences) as a linear system 𝐀 𝐩 = 𝟎

- total least squares (𝑎𝑟𝑔𝑚𝑖𝑛𝐱 𝐀 𝐩 𝟐𝑠. 𝑡. 𝐩 𝟐 = 1) gives the best approximation

- closed-form solution via the SVD of 𝐀 (its last right singular vector) & Cholesky

- refine by minimizing the 2D reprojection error  ∑# proj 𝐊 𝐑 | 𝐭 𝐗𝐢; 𝜿 − 𝒙# %



In general, we don’t have 3D measurements…

... but more than 1 image!

What are the geometric constraints governing 

multiple views of the same scene?

à 2D correspondences!



Get 3D structure & motion from 2D correspondences

https://kornia.readthedocs.io/en/latest/applications/image_matching.html

https://kornia.readthedocs.io/en/latest/applications/image_matching.html


Correspondence estimation

Can use a wide range of features (cf. example in Project 1).
More details in upcoming lectures by Juan Carlos



Dubrovnik, Croatia. 4,619 images (out of an initial 57,845
downloaded from Flickr). 3.5M points!
Total reconstruction time: 17.5 hours on 352 cores

Building Rome in a Day, Agarwal et al, ICCV’09
http://grail.cs.washington.edu/rome/

Get 3D structure & motion from 2D correspondences

http://grail.cs.washington.edu/rome/


Why do we care about 3D reconstruction?

•Mapping, Localization, Navigation for Robots, Drones, Cars

(cf. also visual SLAM)

• AR (e.g., Hololens) and VR (e.g., Oculus)

•Movies (special FX), Digital Preservation, “Photo Tourism”, …

• Software: COLMAP (SfM), orb-slam2 / g2o / gtsam (SLAM)

• Hot topic in industry & academia (top category at CVPR)

https://www.youtube.com/watch?v=imt2qZ7uw1s
https://www.youtube.com/watch?v=8DISRmsO2YQ
https://www.youtube.com/watch?v=BuRCJ2fegcc
https://www.youtube.com/watch?v=RdYWp70P_kY
http://phototour.cs.washington.edu/
https://colmap.github.io/
https://github.com/raulmur/ORB_SLAM2
https://github.com/RainerKuemmerle/g2o
https://github.com/borglab/gtsam


Multi-view geometry problems

Camera 3
R3,t3

Slide credit: 
Noah Snavely

?

Camera 1
Camera 2R1,t1 R2,t2

Recovering structure:
Given known cameras and 
estimated 2D correspondences,
find 3D points à Triangulation



Multi-view geometry problems

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2 R3,t3? ? ?

Motion:
Figure out R, t for a set of 
cameras given estimated 
2D correspondences

Slide credit: 
Noah Snavely



What	will	we	learn	today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)
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Triangulation
Given projections of a 3D point in two or more images (with 
known camera matrices), find the coordinates of the point

𝑿?



Triangulation
Given projections of a 3D point in two or more images (with 
known camera matrices), find the coordinates of the point

𝑶 𝑶′

𝒙
𝒙′

𝑿?



Triangulation
We want to intersect the two visual rays corresponding to 𝒙 and 𝒙$

But do they always intersect exactly?
No! Noise in 2D matching or numerical errors

𝑶 𝑶′

𝒙
𝒙′

𝑿?



Triangulation: linear approach
Find the shortest segment connecting the two viewing rays
Let 𝐗 be the midpoint of that segment: solve for 𝐗!

𝐗

𝑶 𝑶′

𝒙
𝒙′

As for calibration: constraints (𝐱~𝐏𝐗, 𝐱′~𝐏′𝐗) à 𝐀𝐗 = 𝟎à SVD of 𝐀

what is 𝐀?

(answer in appendix)



Triangulation: non-linear approach
Find 𝑿 that minimizes the 2D reprojection errors 

proj 𝑷𝑿 − 𝒙 % + proj 𝑷$𝑿 − 𝒙$ %

𝑿?

𝑷𝑿

𝑷′𝑿

𝑶 𝑶′

𝒙
𝒙′



What	will	we	learn	today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)



𝑶 𝑶′

• Suppose we have two cameras with centers 𝑶, 𝑶′
• The baseline is the line connecting the origins 

Epipolar geometry setup



𝑶 𝑶′

Epipolar geometry setup

• Epipoles 𝒆, 𝒆′ are where the baseline intersects the image planes
• Equivalently: epipoles are projections of the other camera in each view

𝒆 𝒆′



• Consider a point 𝑿, which projects to 𝒙 and 𝒙′

Epipolar geometry setup

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′



• The plane formed by 𝑿, 𝑶, and 𝑶′ is called an epipolar plane

Epipolar geometry setup

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′



• Epipolar lines connect the epipoles to the projections of 𝑿
• Equivalently, they are intersections of the epipolar plane with the 

image planes, come in pairs (for x and x’)

Epipolar geometry setup

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′



Epipolar plane

Epipolar geometry setup: Summary

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′Baseline

Epipoles

Epipolar lines



Epipolar constraint

𝑶

𝒙

• Suppose we observe a single point 𝒙 in one image



• Where can we find the 𝒙′ corresponding to 𝒙 in the other image?

Epipolar constraint

𝑶 𝑶′

𝒙

𝒆 𝒆′



Epipolar constraint

𝑶 𝑶′

𝒙

𝒆 𝒆′
• Where can we find the 𝒙′ corresponding to 𝒙 in the other image?
• Along the epipolar line corresponding to 𝒙 (projection of visual ray 

connecting 𝑶 with 𝒙 into the second image plane)



Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′

• Similarly, all points in the left image corresponding to 𝒙′ have to lie 
along the epipolar line corresponding to 𝒙′



• Potential matches for 𝒙 have to lie on the matching epipolar line 𝒍$ and vice-
versa à need only to search along 1D epipolar line for matching!

Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′𝒙

𝒍′𝒍



• Whenever two points 𝒙 and 𝒙′ lie on matching epipolar lines 𝒍 and 𝒍′, the 
visual rays corresponding to them meet in space, i.e., 𝒙 and 𝒙′ could be
projections of the same 3D point 𝑿

Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′𝒙

𝒍′𝒍

𝑿



• Caveat: if 𝒙 and 𝒙′ satisfy the epipolar constraint, this doesn’t mean they 
have to be projections of the same 3D point

Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′𝒙

𝒍′𝒍

𝑿′ 𝑿



Epipolar constraint: Example



Epipolar Geometry & Deep Learning

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022)
Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, Adrien Gaidon

https://arxiv.org/abs/2204.07616


Epipolar Geometry & Deep Learning

Multi-Frame Self-Supervised Depth Estimation with Transformers (CVPR 2022)
Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, Adrien Gaidon

https://arxiv.org/abs/2204.07616


The Epipolar Constraint as an Equation

𝒙 𝒙!

𝑿

𝒍 𝒍′

𝑥!, 𝑦!, 1
𝑓"" 𝑓"# 𝑓"$
𝑓#" 𝑓## 𝑓#$
𝑓$" 𝑓$# 𝑓$$

𝑥
𝑦
1

= 0

[2] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 1981

and 𝑬 = 𝒕 ×𝑹 is the Essential Matrix [2]

𝒕
𝑹

𝒙!"𝑭𝒙 = 0 where 𝑭 = 𝑲′'(𝑬𝑲') is called the ✨Fundamental Matrix✨ [1]

[1] Faugeras et al., (1992), Hartley (1992) (sketch of proof in appendix)

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)


Estimating the fundamental matrix - teaser
• Given: correspondences 𝒙 = (𝑥, 𝑦, 1)( and 𝒙$ = (𝑥′, 𝑦′, 1)(



Estimating the fundamental matrix - teaser
• Given: 2D correspondences 𝒙 = (𝑥, 𝑦, 1)( and 𝒙$ = (𝑥′, 𝑦′, 1)(

• Constraints: 𝒙′𝑻𝑭𝒙 = 0 (1 per correspondence, how many needed?)
• Boils down to another homogeneous linear equation 𝑨𝑿 = 𝟎
• Recast once more into total least squares (Sz.A.2.1) due to noise
• SVD gives the solution as usual + enables enforcing rank 2 

constraint by replacing smallest singular value with 0
• This “algebraic” algorithm is called “[normalized] 8-point algorithm” 

(R. Hartley. In defense of the eight-point algorithm. TPAMI 1997)
• As in calibration and homography fitting: non-linear “geometric” 

optimization (of reprojected distances) is more precise
• Can be made robust to outliers via the RANSAC algorithm
• See appendix, H&Z ch. 9, Szeliski 11.3, or take CS231A for more!

http://szeliski.org/Book/
https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf
http://szeliski.org/Book/


From epipolar geometry to camera calibration

Estimating the fundamental matrix is known as “weak calibration”

If we know the calibration matrices (K, K') of the two cameras,
we can estimate the essential matrix: 𝑬 = 𝑲′𝑇𝑭𝑲

The essential matrix gives us the relative rotation and translation 
between the cameras, or their extrinsic parameters (𝐄 = 𝒕 ×𝑹)

Alternatively, if the calibration matrices are known (or in practice, if 
good initial guesses of the intrinsics are available), the five-point 
algorithm can be used to estimate relative camera pose

D. Nister. An efficient solution to the five-point relative pose problem. IEEE Trans. PAMI, 2004

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1518&rep=rep1&type=pdf


What	will	we	learn	today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)



Example configuration: Converging cameras

Image Credit: Hartley & Zisserman



Example configuration: Converging cameras

• Epipoles are finite, may be visible in the image

𝑶 𝑶′𝒆′𝒆



Example configuration: Motion parallel to image plane

Where are the epipoles?
What do the epipolar lines look like?

𝑶 𝑶′



Example configuration: Motion parallel to image plane

𝒆 𝒆′

Epipoles infinitely far away!
Epipolar lines parallel: "scan lines"

à Stereo = easier fronto-parallel special case!

𝑶 𝑶′



History: Stereograms
Humans can fuse pairs of images to get a sensation of depth

Stereograms: Invented by Sir Charles Wheatstone, 1838
https://en.wikipedia.org/wiki/Stereoscopy

Vérascope 40

https://en.wikipedia.org/wiki/Stereoscopy


Slide credit: J. Hayes

Depth from convergence



Stereo Matching for Depth Estimation

Given: stereo pair (assumed calibrated) 
Wanted: dense depth map



Basic stereo matching algorithm

For each pixel in the first image
Find corresponding epipolar line in the right image: same row!

Examine all pixels on the epipolar line and pick the best match

Triangulate the matches to get depth information

More details in appendix: rectification, matching, depth from disparity, etc



Stereo on the Perseverance Mars Rover

https://mars.nasa.gov/mars2020/spacecraft/rover/cameras/

https://mars.nasa.gov/mars2020/spacecraft/rover/cameras/


What	will	we	learn	today?

Triangulation

Epipolar geometry

Stereo

Structure-from-Motion (SfM)
Reference: Szeliski 11, H&Z ch. 9

Most slides adapted from N. Snavely & S. Lazebnik

http://szeliski.org/Book/
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf


Structure-from-Motion

Given many images, how can we 
a) figure out where they were all taken from?
b) build a 3D model of the scene?

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006.
http://phototour.cs.washington.edu/

http://phototour.cs.washington.edu/
http://phototour.cs.washington.edu/


Geometry of more than two views?

2 views: governed by the 3x3 Fundamental Matrix (how to go 
from one point in an image to the epipolar line in the 2nd image)

3 views: governed by the 3 x 3 x 3 Trifocal Tensor

4 views: governed by the 3 x 3 x 3 x 3 Quadrifocal Tensor

After this it starts to get complicated…

à explicitly solve for camera poses and scene geometry



Large-scale structure-from-motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845
downloaded from Flickr). 3.5M points!
Total reconstruction time: 17.5 hours on 352 cores

Building Rome in a Day, Agarwal et al, ICCV’09
http://grail.cs.washington.edu/rome/

http://grail.cs.washington.edu/rome/


Recall: Calibration

Camera 3Camera 1

Camera 2

?
?

?𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3



Recall: Triangulation / Multi-view Stereo
?

Camera 3Camera 1

Camera 2

𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3



Structure-from-Motion

Camera 3Camera 1

Camera 2
?

?
?𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3

?



Structure-from-Motion

• Input: images with 2D points 𝒙𝑖𝑗 in correspondence      

• Output (solved simultaneously now!)
• structure: 3D location 𝑿𝑗 for each point 𝒙𝑖𝑗
• motion: camera parameters 𝑹", 𝒕𝑖 & possibly 𝑲𝑖

• Objective function: minimize reprojection error in 2D

Reconstruction (side) (top)



Incremental Structure-from-Motion

ca
m

er
as

points

• Initialize motion from two images 
using the fundamental matrix
• Initialize structure by triangulation
• For each additional view:

• Determine projection matrix of new 
camera using all the known 3D points 
that are visible in its image – calibration 



Incremental Structure-from-Motion
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m

er
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points

• Initialize motion from two images 
using the fundamental matrix
• Initialize structure by triangulation
• For each additional view:

• Determine projection matrix of new 
camera using all the known 3D points 
that are visible in its image – calibration 

• Refine and extend structure: compute 
newly visible 3D points, re-optimize 
existing points that are also seen by this 
camera – triangulation 



Incremental Structure-from-Motion

ca
m

er
as

points

• Initialize motion from two images 
using the fundamental matrix
• Initialize structure by triangulation
• For each additional view:

• Determine projection matrix of new 
camera using all the known 3D points 
that are visible in its image – calibration 

• Refine and extend structure: compute 
newly visible 3D points, re-optimize 
existing points that are also seen by this 
camera – triangulation

• Refine all cameras & points jointly: bundle adjustment



Bundle Adjustment
Non-linear method for refining structure (𝑿-) and motion (𝑷#)
Minimize reprojection error (with lots of bells and whistles):

J
#.)

/

J
-.)

0

𝑤#-𝑑 𝒙#- − proj 𝑷#𝑿-
%

𝒙1𝑗

𝒙2𝑗

𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3

𝑷1𝑿𝑗

𝑷2𝑿𝑗
𝑷3𝑿𝑗

visibility flag: is 
point 𝑗 visible in 

view 𝑖?

B. Triggs et al. Bundle adjustment – A modern synthesis. International Workshop on Vision Algorithms, 1999

https://hal.inria.fr/inria-00548290/document


Incremental SfM in Practice

• Pick a pair of images with lots of inliers (and good EXIF data)
• Initialize intrinsic parameters (focal length, principal point) from EXIF

• Estimate extrinsic parameters (𝑹 and 𝒕) using five-point algorithm

• Use triangulation to initialize model points

• While remaining images exist
• Find an image with many feature matches with images in the model

• Run RANSAC on feature matches to register new image to model

• Triangulate new points

• Perform bundle adjustment to re-optimize everything

• Optionally, align with GPS from EXIF data or ground control points

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf


Incremental structure from motion

Time-lapse reconstruction of Dubrovnik, Croatia, viewed from above



COLMAP

https://colmap.github.io/

https://colmap.github.io/


SfM in the age of Deep Learning

ET-MVSNet: When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo (ICCV'23)

See also MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth (TMLR'23)

https://github.com/tqtqliu/et-mvsnet
https://maybelx.github.io/MVSFormer.github.io/


Supervising the new with the old: learning SFM from SFM

https://openaccess.thecvf.com/content_ECCV_2018/papers/Maria_Klodt_Supervising_the_new_ECCV_2018_paper.pdf

https://openaccess.thecvf.com/content_ECCV_2018/papers/Maria_Klodt_Supervising_the_new_ECCV_2018_paper.pdf


What did we learn today?

Triangulation
from calibrated cameras and 2D correspondences to 3D points

Epipolar geometry
Epipolar constraint,
Essential & Fundamental matrices

Stereo (fronto-parallel special case)

Structure-from-Motion (SfM) (many images / video)

Note: this is just an introduction à for more, take CS231a or get into HZ 

𝒙$(𝑭𝒙 = 0



Wrapping	up	Geometric	Vision

Homogeneous Coordinates & Projective Space

2D &  3D Transforms as Matrix Multiplication

Pinhole Camera Model P=K[R|t]

Calibration from known 3D-to-2D correspondences

Multi-view geom: fundamental matrix, stereo, SfM



Appendix



Triangulation: Linear approach

Rewrite cross product as matrix multiplication:

𝜆𝒙 = 𝑷𝑿
𝜆$𝒙′ = 𝑷′𝑿

𝒙 × 𝑷𝑿 = 𝟎
𝒙$× 𝑷′𝑿 = 𝟎

𝒙 ×𝑷𝑿 = 𝟎
𝒙′ ×𝑷′𝑿 = 𝟎

𝒂×𝒃 =
0 −𝑎1 𝑎%
𝑎1 0 −𝑎)
−𝑎% 𝑎) 0

𝑏)
𝑏%
𝑏1

= 𝒂 ×𝒃

2 independent equations per 2D point --> 4 equations in matrix form

𝐏 =
𝒑𝟏3

𝒑𝟐3

𝒑𝟑3
, 𝐀𝐗 =

𝑦𝒑𝟑3 − 𝒑𝟐3

𝒑𝟏3 − 𝑥𝒑𝟑3

𝑦′𝒑𝟑$3 − 𝒑𝟐$3

𝒑𝟏$3 − 𝑥′𝒑𝟑$3

𝑋
𝑌
𝑍
𝑊

= 𝟎
Total Least Squares:

min
𝐗

𝐀𝐗 % 𝑠. 𝑡. 𝐗 % = 1

Solved via SVD! (Sz. A.2.1)



Bonus	slides	- Math	of	the	Epipolar	Constraint

Slides credit: S. Lazebnik



Math of the epipolar constraint: Calibrated case

• Assume the intrinsic and extrinsic parameters of the cameras are known, 
world coordinate system is set to that of the first camera 

• Then the projection matrices are given by 𝑷 = 𝑲[𝑰 | 𝟎] and 𝑷7 = 𝑲′[𝑹 | 𝒕]
• We can pre-multiply the projection matrices (and the image points) by the 

inverse calibration matrices to get normalized image coordinates:
𝒙89:; = 𝑲<𝟏𝒙>?@AB~ 𝑰 𝟎]𝑿, 𝒙′89:; = 𝑲7<𝟏𝒙>?@AB7 ~ 𝑹 𝒕]𝑿

𝒙 𝒙′

𝑿

𝒕
𝑹



Math of the epipolar constraint: Calibrated case

• We have 𝒙$~𝑹𝒙 + 𝒕
• This means the three vectors 𝒙$, 𝑹𝒙, and 𝒕 are linearly dependent
• This constraint can be written using the triple product 

𝒙$ ^ 𝒕× 𝑹𝒙 = 0

𝒙 𝒙!

𝑿

𝑰 𝟎] 𝒙
1 𝑹 𝒕] 𝒙

1
= 𝑹𝒙 + 𝒕𝒕

𝑹

𝒙!"#$~ 𝑰 𝟎]𝑿 𝒙′!"#$~ 𝑹 𝒕]𝑿= (𝒙, 1)"



Math of the epipolar constraint: Calibrated case

𝒙 𝒙!

𝑿 = (𝒙, 1)"

𝒕
𝑹

Recall: 𝒂×𝒃 =
0 −𝑎1 𝑎%
𝑎1 0 −𝑎)
−𝑎% 𝑎) 0

𝑏)
𝑏%
𝑏1

= 𝒂 ×𝒃

𝒙$ ^ 𝒕× 𝑹𝒙 = 0 𝒙$( 𝒕 ×𝑹𝒙 = 0

𝑰 𝟎] 𝒙
1 𝑹 𝒕] 𝒙

1
= 𝑹𝒙 + 𝒕



Math of the epipolar constraint: Calibrated case

𝒙$ ^ 𝒕× 𝑹𝒙 = 0

𝒙 𝒙!

𝑿 = (𝒙, 1)"

𝒕
𝑹

𝒙$( 𝒕 ×𝑹𝒙 = 0

Essential Matrix

𝒙$(𝑬𝒙 = 0

𝑰 𝟎] 𝒙
1 𝑹 𝒕] 𝒙

1
= 𝑹𝒙 + 𝒕

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature 
293 (5828): 133–135, September 1981

𝑬 = 𝒕 ×𝑹

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


The essential matrix

𝒙 𝒙!

𝑿

𝒙$(𝑬𝒙 = 0

𝑥%, 𝑦%, 1
𝑒&& 𝑒&' 𝑒&(
𝑒'& 𝑒'' 𝑒'(
𝑒(& 𝑒(' 𝑒((

𝑥
𝑦
1

= 0



Essential essential matrix properties

𝒙 𝒙!

𝑿

𝒙$(𝑬𝒙 = 0

𝑬𝒙 is the epipolar line associated with 𝒙 (𝒍′ = 𝑬𝒙)

𝒍!

Recall: a line is given by 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 or 𝒍𝑻𝒙 = 0
where 𝒍 = (𝑎, 𝑏, 𝑐)( and 𝒙 = (𝑥, 𝑦, 1)(

𝑶 𝑶′
𝒆

𝒆′



Essential essential matrix properties

𝒙 𝒙!

𝑿

𝒙$(𝑬𝒙 = 0
𝒍!

• 𝑬𝒙 is the epipolar line associated with 𝒙 (𝒍′ = 𝑬𝒙)

• 𝑬H𝒙′ is the epipolar line associated with 𝒙′ (𝒍 = 𝑬H𝒙′)

• Epipoles are the null−spaces of E:  𝑬𝒆 = 𝟎 and   𝑬I𝒆′ = 𝟎
(all epipolar lines pass through epipoles: ∀𝒙, 𝒍7I𝒆′ = 𝒙I𝑬I𝒆′ = 0 ⇒ 𝑬I𝒆′ = 𝟎)

• 𝑬 is singular: rank 2 with 2 non-zero identical singular values

• 𝑬 has 5 d.o.f. (3 for R, 3 for t, -1 for scale)

𝑶 𝑶′
𝒆

𝒆′

Cf. H&Z ch. 9 for proofs

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf


Epipolar constraint: Uncalibrated case

• What if we don’t know the camera calibration matrices 𝑲 and 𝑲′?
• Epipolar constraint in terms of unknown normalized coordinates:

𝒙789:$( 𝑬𝒙789: = 0, 
where 𝒙789: = 𝑲'𝟏𝒙, 𝒙′789: = 𝑲$'𝟏𝒙′

𝒙 𝒙!

𝑿



Epipolar constraint: Uncalibrated case

𝒙789:$( 𝑬𝒙789: = 0

𝒙 𝒙!

𝑿

𝒙$(𝑭𝒙 = 0, where 𝑭 = 𝑲′'(𝑬𝑲')

𝒙789: = 𝑲'𝟏𝒙

𝒙′789: = 𝑲$'𝟏𝒙′
Fundamental Matrix

Faugeras et al., (1992), Hartley (1992)

https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)


Fundamental fundamental matrix properties

𝒙 𝒙!

𝑿

𝒙$(𝑭𝒙 = 0
𝒍!

• 𝑭𝒙 is the epipolar line associated with 𝒙 (𝒍′ = 𝑭𝒙)

• 𝑭(𝒙′ is the epipolar line associated with 𝒙′ (𝒍 = 𝑭(𝒙′)

• 𝑭𝒆 = 0 and   𝑭3𝒆′ = 0 (can solve for epipoles via… SVD!)

• 𝑭 is singular (rank 2)

• 𝑭 has 7 d.o.f. (9 parameters, -1 for scale, -1 for singularity)

𝑶 𝑶′
𝒆

𝒆′

Cf. H&Z ch. 9 for proofs

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf


Estimating the fundamental matrix
• Given: correspondences 𝒙 = (𝑥, 𝑦, 1)( and 𝒙$ = (𝑥′, 𝑦′, 1)(

• Constraint: 𝒙′𝑻𝑭𝒙 = 0

• 𝑥7, 𝑦7, 1
𝑓JJ 𝑓J% 𝑓JK
𝑓%J 𝑓%% 𝑓%K
𝑓KJ 𝑓K% 𝑓KK

𝑥
𝑦
1

= 0

𝑥%𝑥, 𝑥%𝑦, 𝑥′, 𝑦%𝑥, 𝑦%𝑦, 𝑦′, 𝑥, 𝑦, 1

𝑓&&
𝑓&'
𝑓&(
𝑓'&
𝑓''
𝑓'(
𝑓(&
𝑓('
𝑓((

= 0



The eight point algorithm

•
⋮

𝑥$𝑥 𝑥$𝑦 𝑥′ 𝑦$𝑥 𝑦$𝑦 𝑦′ 𝑥 𝑦 1
⋮

𝑓))
𝑓)%
𝑓)1
𝑓%)
𝑓%%
𝑓%1
𝑓1)
𝑓1%
𝑓11

= 𝟎

• Homogeneous least squares to find 𝒇:

arg min
𝒇 .)

𝑼𝒇 %
% Eigenvector of 𝑼𝑻𝑼 with 

smallest eigenvalue

𝑼



Enforcing rank-2 constraint
• We know 𝑭 needs to be singular/rank 2. How do we force it to 

be singular?
• Solution: take SVD of the initial estimate and throw out the 

smallest singular value

𝑭#$#% = 𝑼𝚺𝑽"

𝚺 =
𝜎& 0 0
0 𝜎' 0
0 0 𝜎(

𝑭 = 𝑼𝜮′𝑽"

𝚺′ =
𝜎& 0 0
0 𝜎' 0
0 0 0



Enforcing rank-2 constraint

Initial 𝑭 estimate Rank-2 estimate



Normalized eight point algorithm

•
⋮

𝑥$𝑥 𝑥$𝑦 𝑥′ 𝑦$𝑥 𝑦$𝑦 𝑦′ 𝑥 𝑦 1
⋮

𝑓))
𝑓)%
𝑓)1
𝑓%)
𝑓%%
𝑓%1
𝑓1)
𝑓1%
𝑓11

= 𝟎

• Recall that 𝑥, 𝑦, 𝑥′, 𝑦′ are pixel coordinates. What might be the 
order of magnitude of each column of 𝑼?

• This causes numerical instability!

𝑼

10) 10) 10( 10) 10) 10( 10( 10( 1



The normalized eight-point algorithm
•In each image, center the set of points at the origin, and scale it 
so the mean squared distance between the origin and the points is 
2 pixels

•Use the eight-point algorithm to compute 𝑭 from the normalized 
points

•Enforce the rank-2 constraint 
•Transform fundamental matrix back to original units: if 𝑻 and 𝑻′
are the normalizing transformations in the two images, 
then the fundamental matrix in original coordinates is 𝑻′𝑇𝑭𝑻

R. Hartley. In defense of the eight-point algorithm. TPAMI 1997

https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf


•Linear estimation minimizes the sum of squared algebraic
distances between points 𝒙#$ and epipolar lines 𝑭𝒙𝑖 (or points 𝒙𝑖
and epipolar lines 𝑭(𝒙#$):

•∑# 𝒙#$(𝑭𝒙𝑖
%

•Nonlinear approach: minimize sum of squared geometric distances 
• ∑# dist(𝒙#$ , 𝑭𝒙𝑖)% + dist(𝒙𝑖, 𝑭(𝒙#$)%

Nonlinear estimation

xi

FT !xi Fxi

!xi



Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel



Seven-point algorithm
• Set up least squares system with seven pairs of matches and 

solve for null space (two vectors) using SVD 
• Solve for polynomial equation to get coefficients of linear 

combination of null space vectors that satisfies det(𝑭) = 0

Source: e.g., M. Pollefeys tutorial (2000)

http://cmp.felk.cvut.cz/cmp/courses/dzo/resources/tutorial-pollefeys-eccv/node57.html


The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/


Bonus	slides	– More	on	Stereo



History: Random dot stereograms
• Invented by Bela Julesz in the mid-20th century
• Demonstration that stereo perception can happen without any 
monocular cues

https://en.wikipedia.org/wiki/Random_dot_stereogram

https://en.wikipedia.org/wiki/B%C3%A9la_Julesz
https://en.wikipedia.org/wiki/Random_dot_stereogram


Stereo image rectification

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999

If the image planes are not 
parallel, we can find 
homographies to project each 
view onto a common plane 
parallel to the baseline

http://dev.ipol.im/~morel/Dossier_MVA_2011_Cours_Transparents_Documents/2011_Cours7_Document2_Loop-Zhang-CVPR1999.pdf


Stereo image rectification

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999

If the image planes are not 
parallel, we can find 
homographies to project each 
view onto a common plane 
parallel to the baseline

http://dev.ipol.im/~morel/Dossier_MVA_2011_Cours_Transparents_Documents/2011_Cours7_Document2_Loop-Zhang-CVPR1999.pdf


Stereo image rectification
Before rectification:

Image source

https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/medoc.ustuttgart_fi/DIP-2016-11/DIP-2016-11.pdf


Stereo image rectification
After rectification:

Image source

https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/medoc.ustuttgart_fi/DIP-2016-11/DIP-2016-11.pdf


Another rectification example
Unrectified

Rectified



Basic stereo matching algorithm

•If necessary, rectify the two stereo images to transform 
epipolar lines into horizontal scanlines

•For each pixel 𝑥 in the first image
• Find corresponding epipolar scanline in the right image
• Examine all pixels on the scanline and pick the best match 𝑥′
• Triangulate the matches to get depth information



Depth from disparity

𝑓

𝑥 𝑥′

Baseline
𝐵

𝑧

𝑂 𝑂′

𝑋

𝑓𝐵1 𝐵2

−𝑥′
𝑓

=
𝐵%
𝑧

𝑥 − 𝑥′
𝑓

=
𝐵) + 𝐵%

𝑧

𝑥 − 𝑥′ =
𝑓𝐵
𝑧

𝑥
𝑓
=
𝐵)
𝑧

Disparity

Disparity is inversely proportional to depth! 𝑧 =
𝑓𝐵
𝑥 − 𝑥′



Effect of baseline on stereo results

• Larger baseline
+ Smaller triangulation error
– Matching is more difficult

• Smaller baseline
– Higher triangulation error
+ Matching is easier



Problem for wide baselines: Foreshortening

• Matching with fixed-size windows will fail!
• Possible solution: adaptively vary window size
• Another solution: model-based stereo (CS231a)

Slide credit: J. Hayes
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Basic stereo matching algorithm

• If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines

• For each pixel 𝑥 in the first image
• Find corresponding epipolar scanline in the right image
• Examine all pixels on the scanline and pick the best match 𝑥′
• Compute disparity 𝑥 − 𝑥′ and set depth(𝑥) = 𝐵𝑓/(𝑥 − 𝑥′)



The correspondence problem

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities



How to find the best match?
• Compare pixels: sliding window + SSD or normalized cross-correlation

Matching cost

disparity

Left Right

scanline



How to find the best match?
• Compare pixels: sliding window + SSD or normalized cross-correlation
• Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast 
Approximate Energy Minimization via Graph Cuts,  PAMI 2001)

Window-based matchingGround truthData
Global optimization 
method (graph cuts)

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


How to find the best match?
• Compare pixels: sliding window + SSD or normalized cross-correlation
• Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast 
Approximate Energy Minimization via Graph Cuts,  PAMI 2001)
• Deep Learning: match learned representations, end-to-end estimation

RAFT-Stereo: Multilevel Recurrent Field Transforms
for Stereo Matching, L. Lipson et al, arXiv 2021

SuperDepth: Self-Supervised, Super-Resolved 
Monocular Depth Estimation, Pillai et al, ICRA’19

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
https://arxiv.org/abs/2109.07547
https://arxiv.org/abs/2109.07547
https://arxiv.org/abs/1810.01849
https://arxiv.org/abs/1810.01849


Correspondences in the age of Deep Learning

LoFTR: Detector-Free Local Feature Matching with Transformers (CVPR'21) https://arxiv.org/abs/2104.00680v1

https://arxiv.org/abs/2104.00680v1


Correspondences in the age of Deep Learning

RoMa: Robust Dense Feature Matching https://parskatt.github.io/RoMa/

https://parskatt.github.io/RoMa/


How to find the best match?
• Compare pixels: sliding window + SSD or normalized cross-correlation
• Global optimization (Y. Boykov, O. Veksler, and R. Zabih, Fast 
Approximate Energy Minimization via Graph Cuts,  PAMI 2001)
• Deep Learning: match learned representations, end-to-end estimation
• “Active stereo”: project lasers or structured patterns (e.g., in IR)

camera 

projector

L. Zhang, et al. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/ https://www.cnet.com/news/apple-face-id-truedepth-how-it-works/

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://grail.cs.washington.edu/projects/moscan/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
https://www.cnet.com/news/apple-face-id-truedepth-how-it-works/


Bonus	slides	– SfM	ambiguities

Slides credit: S. Lazebnik



Projective structure from motion
•Given: 𝑚 images of 𝑛 fixed 3D points such that (ignoring visibility):

𝒙𝑖𝑗~𝑷𝑖𝑿𝑗 , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛

•Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from 
the 𝑚𝑛 correspondences 𝒙𝑖𝑗

𝒙1𝑗

𝒙2𝑗
𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3



Is SFM always uniquely solvable?

Source: N. Snavely

Necker cube

http://en.wikipedia.org/wiki/Necker_cube


Structure from motion ambiguity
If we scale the entire scene by some factor 𝑘 and, at the same 
time, scale the camera matrices by the factor of 1/𝑘, the 
projections of the scene points remain exactly the same:

𝒙~𝑷𝑿 =
1
𝑘
𝑷 (𝑘𝑿)

Without a reference measurement, it is impossible to recover the 
absolute scale of the scene!
In general, if we transform the scene using a transformation 𝑸 and 
apply the inverse transformation to the camera matrices, then the 
image observations do not change:

𝒙~𝑷𝑿 = 𝑷𝑸') (𝑸𝑿)



Projective structure from motion
•Given: 𝑚 images of 𝑛 fixed 3D points such that (ignoring visibility):

𝒙𝑖𝑗~𝑷𝑖𝑿𝑗 , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛

•Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from 
the 𝑚𝑛 correspondences 𝒙𝑖𝑗

•With no calibration info, cameras and points can only be recovered up 
to a 4×4 projective transformation 𝑸:

𝑿 → 𝑸𝑿,𝑷 → 𝑷𝑸'𝟏 ⇒ 𝒙 ~ 𝑷𝑿 = 𝑷𝑸'𝟏𝑸𝑿
•We can solve for structure and motion when 2𝑚𝑛 ≥ 11𝑚 + 3𝑛 − 15
•Inequality above --> for 𝑚 = 2 cameras, need at least 𝑛 = 7 points
•Remember: 𝑭 has 7 d.o.f., not a coincidence! 



Projective SFM: Two-camera case
1. Estimate fundamental matrix 𝑭 between the two views
2. Set first camera matrix to [𝑰 | 𝟎]
3. Then the second camera matrix is given by [𝑨 | 𝒕] where 𝒕 is the 

epipole (𝑭𝑇𝒕 = 𝟎) and 𝑨 = [𝒕]×𝑭

For derivation: cf. CS231A or H&Z Chap.9 result 9.9

H&Z%20ch.%209


Types of ambiguity

ú
û

ù
ê
ë

é
vTv
tAProjective

15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

Preserves intersection and 
tangency

Preserves parallellism, 
volume ratios

Preserves angles, ratios of 
length
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ù
ê
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ú
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ú
û

ù
ê
ë

é
10
tR

T
Preserves angles, lengths

• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean



Projective ambiguity
With no constraints on the camera calibration matrices or on the 
scene, we can reconstruct up to a projective ambiguity:

𝒙~𝑷𝑿 = 𝑷𝑸)& 𝑸𝑿
𝑸 is a general full-rank 4×4 matrix



Projective ambiguity



Affine ambiguity
If we impose parallelism constraints, we can get a reconstruction up 
to an affine ambiguity:

Affine

𝒙~𝑷𝑿 = 𝑷𝑸*)𝟏 𝑸*𝑿

𝑸* =
𝑨 𝒕
𝟎" 1

3×3
full-rank 
matrix

3×1 translation 
vector



Affine ambiguity



Similarity ambiguity
A reconstruction that obeys orthogonality constraints on camera 
parameters and/or scene

𝒙~𝑷𝑿 = 𝑷𝑸,)𝟏 𝑸,𝑿

𝑸, =
𝑠𝑹 𝒕
𝟎" 1

3×3
rotation 
matrix

3×1 translation 
vector



Similarity ambiguity


