Lesson 1-1 Introduction

The Multithreaded DAG Model

DAG = Directed Acyclic Graph : a collection of vertices and directed edges (lines with arrows).

Each edge connects two vertices. The final result of these connections is that there is no way to
start at some vertex ‘A’, follow a sequence of vertices along directed paths, and end up back at
‘A

DAGs can be used for a variety of tasks, including modeling processes in which data flows in a
consistent direction through a network of processors.

Each vertex is an operation - like a function call, addition, branch, etc.
Directed edges show how operations depend on one another.

The ‘sink’ depends on the output of the ‘source’
Assume there is always one starting and one exit vertex.

Begin analysis by looking for a starting vertex - this is a vertex where all inputs are satisfied.
This vertex can be assigned to any open processor.

Scheduling - taking units of work and assigning it to processors.

How long will it take to run the DAG? A cost model is needed.
Cost Model Assumptions:  all processors run at the same speed
1 operation = 1 unit of time
Edges do not have any cost associated with them

Example Sequential Reduction

Reduction - reduce an array to a sum of its elements.
To find the cost of this reduction .... we will only care about the cost of array access and the
cost of addition.

How long will it take to execute this DAG with processors?
T,(n) => ceiling of n/p (time is dependent upon the size of the array) and
T,(n) =>n (then time for each addition)

The additions must be done sequentially.
Both time conditions must be true.



T,(n) => ceiling of n/jp — p will always be at least one. This means a reduction will take n units
of time on a PRAM.

T,(n) =>n (then time for each addition)

QUIZ : A Reduction Tree

Assume associativity (a+b)+c = a+(b+c)

Assume n processors.

Assume addition is done in pairs.

What is the minimum time on a PRAM with P = n processors?

The DAG is executed level by level - and each level takes constant time - so all that is needed to
calculate the time is to know the levels.... log n.

Work and Span

Work = number of vertices in the DAG = W(n)

Span = longest path through the DAG = D(n) = number of vertices on the longest span

Span is also known as the critical path.

Ty(n) =W(n)
Tinfinity(n) = D(n)

QUIZ: Work and Span for Reduction

For the sequential DAG — span = O(n)
For the tree DAG — span = O(log(n))

Basic Work Span Laws

W(n)/D(n) = the amount of work per critical vertex = the average available parallelism in the
DAG.

How many processors for the problem? W(n)/D(n)

Span Law — T (n) => D(n)
Work Law — T (n) => ceiling of W(n)/P

T,(n) => maximum of {Span Law, Work Law} = {D(n), ceiling of W(n)/P}



Brent’s Theorem Part 1 (setup)

Is there an upper bound to execute the DAG? Yes, according to Brent's Theorem

Given a PRAM with P processors....
Break the execution into phases:
1.  Each phase has 1 critical path vertex
2. Non-critical path vertices in each phase are independent. This means the vertices in the
phase can have edges that enter or exit the phase, but they cannot depend on one

another.
3. Every vertex has to be in some phase, and only one phase.
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How long will it take to execute phase k?

[N —

w D e

v - =

— i _—;T =

(‘Hm EML ¢ P P FZI ‘
Pt )

QUIZ Brent’s Theorem Aside
Use the following equivalencies ...
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Brent’s Theorem Part 2

The upper bound of the time to execute the DAG is:
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which becomes ....
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This is Brent’'s Theorem. It says ...

The upper limit of time to execute the path, using P processors is <= The time to execute the
critical path + the time to execute everything off the critical path using p processors.

**This sets the goal for any scheduler. **
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These two limits are within a factor of 2 with each other.

This implies that you may be able to execute the DAG in a faster time than Brent predicts, but
never faster than the lower bound.

Desiderata Speedup, Work Optimality, and Weak Scaling

How can we tell is a DAG is good or bad.

Speedup = best sequential time/ parallel time = S (n) = T.(n) / T (n)

T.(n) — depends on the work done by the best sequential algorithm
Tp(n) — depends on the work, the span, n, and p

Ideal Speedup : Linear in P (you want the speedup to be linear with the number of processors).



S,(n) = Theta(p) = Best Sequential Work/ Parallel Time = W.(n)/T (n)

Use Brent’s Theorem to get an Upper bound on time.
In the equation shown below... there is still a dependence on n, it is just not shown on the right
side.
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To get a constant in the denominator:
W =W. — Work Optimality

Weak Scalability
P=0(W./D)— W.P =0mega(D) — work per processor has to grow proportional to the
span. Span depends on problem size n.

Recap:

Speedup — linear scaling is the goal.

To achieve linear scaling — the work of the parallel algorithm should match the best sequential
algorithm and the work per processor should grow as a function of n.

Basic Concurrency Primitives

The Divide and Conguer Scheme
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SYNC - the dependence between a and b and the return statement. These have to be combined.
Sync is used to combine the dependent statements.

To which Spawn does a given Sync apply? The sync matches any spawn in the same frame.
Nested Parallelism = There is always an implicit sync before returning to the caller.
The spawn creates two independent paths - one path carries the new work, and one path

continues carrying on after the spawn.

QUIZ: A Subtle Point About Spawns
The above cursive reduction uses two spawns - are they both necessary? You can eliminate B
but not A.

If you eliminate the A path -- you eliminate
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vedwa (@xs + )

Basic Analysis of Work and Span
Many of the analysis tools used on sequential algorithms can be used on parallel algorithms.



Want to analyze work and span.

_ Assume each spawn and sync is a constant time
M : W(n)+ ? DICYE ? operation. And can be ignored for analysis.

W) =) 2- M%) 4.0(1) N2 2 Analyzing work is counting total operations, end up with
. linear work O(n).
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_ O[uﬂ Analyzing Span - a spawn creates two paths, the critical
path is the longer of the two paths.
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Desiderata For Work and Span
The goals of a parallel algorithm designer:
1. Work optimality - Achieve a degree of work that matches the best sequential algorithm.
2.  Find algorithms with polylogarithmic span. D(n) = O(log* n) this is low span
This insures the average available parallelism grows with n.

Concurrency Primitive Parallel For

All iterations are independent of one another.

A parfor creates ‘n’ independent sub paths.

The end of a parfor loop will include an implicit syncpoint.

The Work of a parfor is W, ,(n) = O(n)

The Span of a parfor is D, (n) = O(1) in theory, but in practice it will grow with n, especially if n
is really large.

QUIZ Implementing ParFor
The DAG executes the spawns sequentially, one after another. This leads to a bottleneck. The
Span grows with n. This is bad.

Implementing Par For Part 2
Implement par for as a procedure call (ParForT). This is a better way to implement a parallel for

loop. The span will now grow logarithmically with n.

For the rest of this course, assume the ParForT implementation.



D(n) = O(log n)
QUIZ Matrix Vector Multiply
If a loop carries a dependence, then it cannot be parallelized with a par for.

Data Races and Race Conditions
If we look at the nested loops, we
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Data Race = at least one read and one write can happen at the same data location at the same
time.

Race Condition = a data race that causes an error.

**A data race does not always lead to a race condition. **
Vector Notation
t[1:n] < A[i, 1:n] * x[1:n]  This is a more compact form of the parfor loop.

t[:] < Ali, ;] * x[]

This can be further reduced to : y[i] < y[i] + reduce(t)



