CSC 2547H: AUTOMATED REASONING WITH MACHINE LEARNING

Xujie Si

Assistant Professor

Department of Computer Science

University of Toronto

Paper presentation

• Grading rubrics

- Preparation (15%)
 - Sign up on Ed 5%
 - ✤ Get feedback from TA 5%
 - Practice Recording 5%
- Presentation (70% + 15% bonus)
 - Provide the necessary background 10%
 - Explain the problem and main challenges 10%
 - Illustrate the main ideas clearly 15%
 - Show the main results 15% + demo (15% bonus)
 - Limitations / related / future work discussion 10%
 - Finish under time 10% (15 ~ 20 minutes depending on the sign-ups)
- Question Answering (15%)
 - In-class QA (10%)
 - ✤ Ed QA (5%)

Week	#Sign-ups
Week4: ml4sat	3
Week5: ml4smt	3
Week6: fm4ml	6
Week7: ml4code	2
Week8: dl4code	4
Week9: dl+logic	3
Week10: nv-sym	1

Lecture Overview

- Recap SAT solving
- MaxSAT and Incremental Solving
- Satisfiability modulo Theories (SMT)
- DPLL(T)
- Oppen-Nelson Combination

Recap: DPLL Algorithm

Davis-Putnam-Logemann-Loveland (1962)

Recap: Ablation study of Modern SAT Solver

Importance of major features: Clause Learning > VSIDS > 2WL > Restart

MaxSAT and Incremental solving

• Maximum satisfiability

- Local search (sub-optimal)
- Iterative SAT solving with cardinality constraints
- Incremental solving
 - Assumption variables trick

Cardinality Constraint Encodings

Table 1. Comparison of different encodings for $\leq k (x_1, \ldots, x_n)$.

Encoding	#clauses	#aux. vars	decided
Naïve	$\binom{n}{k+1}$	0	immediately
Sequential unary counter $(LT_{SEQ}^{n,k})$	$\mathcal{O}(n \cdot k)$	$\mathcal{O}(n \cdot k)$	by unit prop.
Parallel binary counter $(LT_{PAR}^{n,k})$	$7n - 3\lfloor \log n \rfloor - 6$	2n - 2	by search
Bailleux & Boufkhad [3]	$\mathcal{O}(n^2)$	$\mathcal{O}(n \cdot \log n)$	by unit prop.
Warners [4]	$8n$	2n	by search

Introducing auxiliary variables helps to reduce the number of clauses

Carsten Sinz, Towards an optimal CNF encoding of Boolean cardinality constraints, Constraint Programming, 2005

SAT vs SMT

A bit history

State-of-the-art Applications

https://github.com/dafny-lang/dafny SMT/Z3 tutorial: https://leodemoura.github.io/slides.html

10

Propositional Logic

- A set of primitive symbols
 - *p*,*q*,*r*,...
- A set of operator symbols (aka. logical connectives)
 - $\bullet \quad \neg, \ \lor, \ \land, \ \rightarrow, \ \leftrightarrow$
- Formula
 - A primitive symbol is a formula
 - "A logical connective + formulas" is also a formula
- Negation Normal Form (NNF)
 - Negation is only applied to variables/symbols
 - Only AND, OR can be used
- Conjunctive Normal Form (CNF)
 - Conjunction of disjunctions
 - Tseytin transformation

First-order Logic

• Terms

- Variables
- Functions $f(t_1, ..., tn)$
 - ✤ Constants are functions with arity o
- Predicate
 - $P(t_1, \dots, t_n)$
 - A bit like "primitive symbols" in proposal logic
- Formula
 - Logical connectives
 - Quantifiers
- Sentence
 - Free variable (i.e., not bound by quantifiers)
 - FOL formula without free variables

First-order logic

- Signature $\boldsymbol{\Sigma}$
 - A set of functions and predicates (aka, non-logical symbols)
- Σ-formula
 - All functions and predicates are in $\boldsymbol{\Sigma}$
- Σ -theory
 - A set of Σ-formula
 - A theory only restricts functions and predicates
- Model (aka structure)
 - A mapping from variables, constants, nonlogical symbols to domain elements

DPLL(T) Basic

Algorithm DPLL(T)(F): $\mathbf{1}$ $F_p \leftarrow \text{encode}(\mathbf{F})$ 2 $x = y \wedge$ while *true* do $((y = z \land \neg (x = z)) \lor x = z)$ 3 $S_p, \text{ res} \leftarrow \text{SAT}(F_p)$ 4 A: x=y; B: y=z; C: x=z if $res = \perp$ then return false 5 $G \leftarrow decode(S_p)$ 6 $T\text{-res} \leftarrow T\text{-Solve}(G)$ 7 $A \wedge$ if T-res = \top then return true 8 $((B \land \neg C) \lor C)$ $F_p \leftarrow F_p \land \neg S_p$ 9 end 10

14

Theory Solver(s)

SAT Solver

DPLL(T) Basic + optimization

•
$$(x = 1) \land (x = 2 \lor x = 3)$$

1 Algorithm DPLL(T)(F): $F_p \leftarrow \text{encode}(\mathbf{F})$ 2 while *true* do 3 $\langle S_p, res \rangle \leftarrow \text{SAT}(F_p)$ 4 if $res = \bot$ then return false 5 $G \leftarrow decode(S_p)$ 6 $\langle G', res \rangle \leftarrow \texttt{T-Solve}(G)$ 7 if $res = \top$ then return true 8 $F_p \leftarrow F_p \land \neg \operatorname{encode}(G')$ 9 **Disable the UNSAT core** end 10instead of the entire assignment

DPLL(T) Basic + optimization

1 Algorithm CDCL(): while *true* do $\mathbf{2}$ $\alpha \leftarrow \alpha \cup \{\text{Choose}()\}$ 3 while BCP() = conflict do4 $backtrack-level \leftarrow AnalyzeConflict()$ 5 if backtrack-level < 0 then 6 return false 7 else 8 BackTrack() 9 end 10end 11 if α is full assignment then 12return true $\mathbf{13}$ end 14 15end

```
1 Algorithm CDCL(T)():
                                                                                                         while true do
                  \mathbf{2}
                                                                                                                                                                \alpha \leftarrow \alpha \cup \{\text{Choose}()\}
                   3
                                                                                                                                                                  while BCP() = conflict do
                   4
                                                                                                                                                                                                                           backtrack-level \leftarrow AnalyzeConflict()
                   5
                                                                                                                                                                                                                          if backtrack-level < 0 then
                   6
                                                                                                                                                                                                                                                                               return false
                       7
                                                                                                                                                                                                                        else
                   8
                                                                                                                                                                                                                                                                                BackTrack()
                       9
                                                                                                                                                                                                                        end
   10
                                                                                                                                                                end
   11
                                                                                               - - \mathbf{i} \cdot \mathbf{f} \cdot \mathbf{a} \cdot \mathbf{f} \cdot \mathbf{f} \cdot \mathbf{h} \cdot \mathbf{h
   12
                                                                                                                                                                                                                        if T-Solver(\alpha) then return true
    13
                                                                                                                                                                                                                          AddClauses()
    14
                                                                                                                                                                end
 15
                                                                                                        end
16
```

Theory of EUF

i=1

A theory T is a set of formula (can be thought as axioms, i.e, "extra constraints")

 ϕ is T-satisfiable if there exists a structure satisfies both ϕ and T

$$\begin{aligned} \forall x. \ x &= x & (\text{Reflexivity}) \\ \forall x. \ \forall y. \ x &= y \implies y = x & (\text{Symmetry}) \\ \forall x. \ \forall y. \ \forall z. \ x &= y \land y = z \implies x = z & (\text{Transitivity}) \\ \forall \bar{x}, \bar{y}. \ \bigwedge^{n} x_{i} &= y_{i} \implies f(\bar{x}) = f(\bar{y}) & (\text{Functional Congruence}) \end{aligned}$$

Animations of deciding EUF

Exercises of EUF

$$f(a,b) = a \wedge f(f(a,b),b) \neq a \qquad \qquad \text{unsat}$$

$$a = b \wedge b = c \wedge g(f(a), b) = g(f(c), a) \wedge f(a) \neq b \qquad \text{ sat}$$

A simple application of EUF

<pre>int fun1(int y) { int x, z; z = y; y = x; x = z; return x * x; }</pre>	$z = y \land$ $y1 = x \land$ $x1 = z \land$ ret1 = x1 * x1	$z = y \land$ $y1 = x \land$ $x1 = z \land$ $ret1 = x1 * x1 \land$ $ret2 = y * y \land$ not (ret1 = ret2)	$z = y \land$ $y1 = x \land$ $x1 = z \land$ $ret1 = f(x1, x1) \land$ $ret2 = f(y, y) \land$ not (ret1 = ret2)
<pre>int fun2(int y) { return y * y; }</pre>	ret2 = y * y		

A simple application of EUF

<pre>int fun1(int y) { int x, z; z = y; y = x; x = z; return x * (x+1); }</pre>	$z = y \land$ $y1 = x \land$ $x1 = z \land$ $t1 = x1 + 1 \land$ ret1 = x1 * t1	
<pre>int fun2(int y) { return (y+1) * y; }</pre>	$t2 = y + 1 \land$ $ret2 = t2 * y$	

"partially interpreted functions"

 $\forall x, y \ f(x, y) = f(y, x)$

$$z = y \land$$

$$y1 = x \land$$

$$x1 = z \land$$

$$t1 = g(x1,1) \land$$

$$ret1 = f(x1,t1) \land$$

$$t2 = g(y,1) \land$$

$$ret2 = f(t2,y) \land$$

$$not (ret1 = ret2)$$

Another way of handling UF

Get rid of uninterpreted functions (UFs) by rewriting

 $(x_1 \neq x_2) \lor (F(x_1) = F(x_2)) \lor (F(x_1) \neq F(x_3))$

Flatten constraints: $(x_1 \neq x_2) \lor (f_1 = f_2) \lor (f_1 \neq f_3)$

Functional consistency constraints:

$$\begin{array}{l} (x_1 = x_2 \Rightarrow f_1 = f_2) \land \\ (x_1 = x_3 \Rightarrow f_1 = f_3) \land \\ (x_2 = x_3 \Rightarrow f_2 = f_3) \end{array}$$

Two possible encodings:

(Satisfiability checking) functional consistency constraints \land flatten constraints (Validity checking) functional consistency constraints \Rightarrow flatten constraints

Ackermann Reduction

Difference logic

• Linear constraints

 $x \ge y + c$

 $x \ge c$

Job Scheduling

- N jobs, T_i is execution time for job I
- Need to finish all jobs before T
- Some jobs cannot execute at the same time

 (s_i, f_i) $f_i \ge s_i + T_i$ $s_i \ge f_j \lor s_j \ge f_i$ $T \ge f_i$

Theory of Arrays

John McCarthy, 1962

- Model arrays as functions read(a, i) write(a, i, v)
- Read-over-write axioms

 $\begin{array}{ll} \forall \ a, i, j, v: i = j \Rightarrow read(write(a, i, v), j) = v & write(a, i, v)[i] = v \\ \forall \ a, i, j, v: i \neq j \Rightarrow read(write(a, i, v), j) = read(a, j) & write(a, i, v)[j] = a[j] \text{ for } i \neq j \end{array}$

ITE(i = j, v, read(a, j))

Apply this trick exhaustively, only read operations remain, Which can be further treated as uninterpreted functions. If we further use Ackermann reduction, all will become equality logic constraints

Theory of Inductive Data Types

- Constructor, Selector, Tester
- function symbol \Leftrightarrow constructor, selector
- predicate symbol \Leftrightarrow each tester

Example: list of int

- Constructors: *cons* : (*int*, *list*) \rightarrow *list*, *null* : *list*
- Selectors: car: $list \rightarrow int$, cdr: $list \rightarrow list$
- Testers: *is_cons*, *is_null*

 $\begin{aligned} \forall x_1, \dots, x_n. \ is_C(C(x_1, \dots, x_n)) &\approx \mathsf{true} \\ \forall x_1, \dots, x_n. \ is_{C'}(C(x_1, \dots, x_n)) &\approx \mathsf{false} \\ \forall x_1, \dots, x_n. \ S_C^{(i)}(C(x_1, \dots, x_n)) &\approx x_i & \text{for all } i = 1, \dots, n \\ \forall x_1, \dots, x_n. \ S_{C'}^{(i)}(C(x_1, \dots, x_n)) &\approx t_{C'}^i & \text{for all } i = 1, \dots, n' \end{aligned}$

Example: $\forall x : list. (x = null \lor \exists y : int, z : list. x = cons(y, z))$

Barrett, et al. An Abstract Decision Procedure for a Theory of Inductive Data Types, JSAT 2007

Many other theories

- Theory of string
- Theory of bit vector
- Theory of linear arithmetic
- Theory of non-linear arithmetic
- Theory of integer linear arithmetic

Combining theories

- Approach #1
 - Reduce all theories to a common logic (e.g., propositional logic), if possible.
- Approach #2
 - Combine decision procedures of the individual theories.
 - The Nelson-Oppen method

Greg Nelson and Derek Oppen, simplification by cooperating decision procedures, 1979

Nelson-Oppen combination

The Theory-Combination problem

- Given theories $\mathsf{T_1}$ and $\mathsf{T_2}$ with signatures $\Sigma_{\textbf{1}}$ and $\Sigma_{\textbf{2}}$
- The combined theory $T_1 \oplus T_2$ has
 - signature $\Sigma_1 \cup \Sigma_2$ and
 - the union of their axioms.
- Let ϕ be a $\Sigma_1 \cup \Sigma_2$ formula.
- Does $T_1 \oplus T_2 \vDash \phi$?

The Theory-combination problem

- Undecidable (even when the individual theories are decidable).
- Under certain restrictions, it becomes decidable.
- We will assume the following restrictions:
 - T₁ and T₂ are decidable, quantifier-free, first-order theories with equality.
 - Disjoint signatures (other than equality): $\Sigma_1 \cap \Sigma_2 = \emptyset$

The Nelson-Oppen method (preprocessing)

Purification: validity-preserving transformation of the formula after which predicates from different theories are not mixed.

- **1.** Replace an `alien' sub-expression ϕ with a new auxiliary variable a
- **2.** Constrain the formula with $a = \phi$

 $x_1 \le f(x_1)$

$$x_1 \le a_1 \land a_1 = f(x_1)$$

Pure expressions, shared variables

Uninterpreted Functions

Arithmetic

The Nelson-Oppen method (easy case)

- Then we are left with several sets of pure expressions F_1, \ldots, F_n
- Each set belongs to some pure theory which we can decide
- ϕ is satisfiable \Leftrightarrow $F_1 \land \cdots \land F_n$ is satisfiable
- If any F_i is unsatisfiable, then claim UNSAT (easy case!)

The Nelson-Oppen method (hard case)

- Q: How do different theories communicate?
 - Hint: they are only "connected" by equality constraints
- A: Broadcasting newly discovered equality constraints to other theories
- Either UNSAT is reached (some F_i becomes UNSAT) Or there is no new equality constraints (all F_1, \dots, F_n are SAT)