CSC 2547H: AUTOMATED REASONING WITH MACHINE LEARNING

Xujie Si

Assistant Professor
Department of Computer Science
University of Toronto

Paper presentation

- Grading rubrics

- Preparation (15\%)
* Sign up on Ed 5\%
* Get feedback from TA 5\%
* Practice Recording 5\%
- Presentation (70\% + 15\% bonus)
* Provide the necessary background 10%
* Explain the problem and main challenges 10%
* Illustrate the main ideas clearly 15%
* Show the main results 15% + demo (15% bonus)
* Limitations / related / future work discussion 10\%

Week	\#Sign-ups
Week4: ml 4 sat	3
Week5: ml 4 smt	3
Week6: fm4ml	6
Week7: ml 4 code	2
Week8: dl4code	4
Week9: dl+logic	3
Week10: nv -sym	1

* Finish under time 10\% (15 ~ 20 minutes depending on the sign-ups)
- Question Answering (15\%)
* In-class QA (10\%)
- Ed QA (5\%)

Lecture Overview

- Recap SAT solving
- MaxSAT and Incremental Solving
- Satisfiability modulo Theories (SMT)
- DPLL(T)
- Oppen-Nelson Combination

Recap: DPLL Algorithm

Davis-Putnam-Logemann-Loveland (1962)

1 Algorithm DPLL(F):
$2 \quad \mathrm{G} \leftarrow \mathrm{BCP}(F)$
if $\bar{G}^{--}=\bar{T}^{-}$then return true
if $G=\perp$ then return false
$5 \quad \mathrm{p} \leftarrow \operatorname{Choose}(G)$
Better branching heuristics
return $\bar{D} \overline{\operatorname{Pa}} \bar{L}^{-}(\bar{G}\{p \mapsto T\}) \| \operatorname{DPLL}(G\{p \mapsto \perp\})$

Better backtracking

Recap: Ablation study of Modern SAT Solver

Importance of major features: Clause Learning > VSIDS > 2WL > Restart

MaxSAT and Incremental solving

- Maximum satisfiability
- Local search (sub-optimal)
- Iterative SAT solving with cardinality constraints
- Incremental solving
- Assumption variables trick

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

Cardinality Constraint Encodings

Table 1. Comparison of different encodings for $\leq k\left(x_{1}, \ldots, x_{n}\right)$.

Encoding	\#clauses	\#aux. vars	decided
Naïve	$\binom{n}{k+1}$	0	immediately
Sequential unary counter $\left(\mathrm{LT}_{\mathrm{SEQ}}^{n, k}\right)$	$\mathcal{O}(n \cdot k)$	$\mathcal{O}(n \cdot k)$	by unit prop.
Parallel binary counter $\left(\mathrm{LT}_{\mathrm{PAR}}^{n, k}\right)$	$7 n-3\lfloor\log n\rfloor-6$	$2 n-2$	by search
Bailleux \& Boufkhad [3]	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(n \cdot \log n)$	by unit prop.
Warners [4]	$8 n$	$2 n$	by search

SAT vs SMT

- SAT problem

A bit history

State-of-the-art Applications

Propositional Logic

- A set of primitive symbols
- p, q, r, \ldots
- A set of operator symbols (aka. logical connectives)
- ᄀ, $\vee, \wedge, \rightarrow, \leftrightarrow$
- Formula
- A primitive symbol is a formula
- "A logical connective + formulas" is also a formula
- Negation Normal Form (NNF)
- Negation is only applied to variables/symbols
- Only AND, OR can be used
- Conjunctive Normal Form (CNF)
- Conjunction of disjunctions
- Tseytin transformation

First-order Logic

- Terms
- Variables
- Functions $f\left(t_{1}, \ldots, t n\right)$
* Constants are functions with arity o
- Predicate
- $P\left(t_{1}, \ldots, t_{n}\right)$
- A bit like "primitive symbols" in proposal logic
- Formula
- Logical connectives
- Quantifiers
- Sentence
- Free variable (i.e., not bound by quantifiers)
- FOL formula without free variables

First-order logic

- Signature Σ

- A set of functions and predicates (aka, non-logical symbols)
- Σ-formula
- All functions and predicates are in Σ
- \sum-theory
- A set of \sum-formula
- A theory only restricts functions and predicates
- Model (aka structure)
- A mapping from variables, constants, nonlogical symbols to domain elements

DPLL(T) Basic

DPLL(T) Basic + optimization

- $(x=1) \wedge(x=2 \vee x=3)$

1 Algorithm $\operatorname{DPLL}(\mathrm{T})(F)$:
$2 \quad F_{p} \leftarrow$ encode (F)
3 while true do
$\left\langle S_{p}, r e s\right\rangle \leftarrow \operatorname{SAT}\left(F_{p}\right)$
if res $=\perp$ then return false
$\mathrm{G} \leftarrow \operatorname{decode}\left(S_{p}\right)$
$\left\langle G^{\prime}, r e s\right\rangle \leftarrow \mathrm{T}-\operatorname{Solve}(G)$
if res $=\top$ then return true
$F_{p} \leftarrow F_{p} \wedge \neg \operatorname{encode}\left(G^{\prime}\right)$
end
Disable the UNSAT core instead of the entire assignment

DPLL(T) Basic + optimization

```
Algorithm CDCL():
    while true do
        \alpha\leftarrow\alpha\cup{Choose()}
        while BCP() = conflict do
            backtrack-level }\leftarrow\mathrm{ AnalyzeConflict()
            if backtrack-level < 0 then
                return false
            else
                BackTrack()
            end
        end
        if \alpha is full assignment then
            return true
        end
    end
```

Algorithm CDCL(T) ():
while true do
$\alpha \leftarrow \alpha \cup\{$ Choose () $\}$
while $\operatorname{BCP}()=$ conflict do
backtrack-level \leftarrow AnalyzeConflict ()
if backtrack-level <0 then
return false
else
BackTrack()
end
end
- if- $\alpha-i$ fall $\begin{gathered}\text { fussignnert then- - - - }\end{gathered}$
if T -Solver (α) then return true
AddClauses()
end
end

Theory of EUF

A theory T is a set of formula (can be thought as axioms, i.e, "extra constraints") ϕ is T-satisfiable if there exists a structure satisfies both ϕ and T

$$
\begin{aligned}
& \forall x . x=x \\
& \forall x . \forall y \cdot x=y \Longrightarrow y=x \\
& \forall x . \forall y \cdot \forall z \cdot x=y \wedge y=z \Longrightarrow x=z
\end{aligned}
$$

(Reflexivity)
(SYMMETRY)
(TRANSITIVITY)

$$
\forall \bar{x}, \bar{y} \cdot \bigwedge_{i=1}^{n} x_{i}=y_{i} \Longrightarrow f(\bar{x})=f(\bar{y}) \quad \text { (Functional Congruence) }
$$

Animations of deciding EUF

Exercises of EUF

$$
\begin{aligned}
& f(a, b)=a \wedge f(f(a, b), b) \neq a \\
& a=b \wedge b=c \wedge g(f(a), b)=g(f(c), a) \wedge f(a) \neq b
\end{aligned}
$$

A simple application of EUF

```
int fun1(int y) {
\begin{tabular}{lc} 
int \(\mathrm{x}, \mathrm{z} ;\) & \(z=y \wedge\) \\
\(\mathrm{z}=\mathrm{y} ;\) & \(y 1=x \wedge\) \\
\(\mathrm{y}=\mathrm{x} ;\) & \(x 1=z \wedge\) \\
\(\mathrm{x}=\mathrm{z} ;\) & \(\operatorname{ret} 1=x 1 * x 1\)
\end{tabular}
    return x * x;
}
\[
\begin{gathered}
z=y \wedge \\
y 1=x \wedge \\
x 1=z \wedge \\
\operatorname{ret} 1=x 1 * x 1 \wedge \\
\operatorname{ret} 2=y * y \wedge \\
\operatorname{not}(\text { ret } 1=\operatorname{ret} 2)
\end{gathered}
\]
\[
\begin{gathered}
z=y \wedge \\
y 1=x \wedge \\
x 1=z \wedge \\
\operatorname{ret} 1=f(x 1, x 1) \wedge \\
\operatorname{ret} 2=f(y, y) \wedge \\
\operatorname{not}(\operatorname{ret} 1=\operatorname{ret} 2)
\end{gathered}
\]
```

$$
\operatorname{ret} 2=y * y
$$

```
```

int fun2(int y) {

```
int fun2(int y) {
    return y * y; ret2 = y*y
    return y * y; ret2 = y*y
}
```

}

```

\section*{A simple application of EUF}
```

int fun1(int y) {
int x, z;
z = y;
y = x;
x = z;
return x * (x+1);
}

```
```

int fun2(int y) {

```
int fun2(int y) {
    z=y^
    y1=x^
    x1=z^
t1=x1+1^
ret1 = x1*t1
```

"partially interpreted functions"

$$
\begin{array}{cc}
z=y \wedge & \forall x, y f(x, y)=f(y, x) \\
y 1=x \wedge & \\
x 1=z \wedge & z=y \wedge \\
t 1=x 1+1 \wedge & y 1=x \wedge \\
\operatorname{ret} 1=x 1 * t 1 & x 1=z \wedge \\
& t 1=g(x 1,1) \wedge \\
& \operatorname{ret} 1=f(x 1, t 1) \wedge \\
t 2=g(y, 1) \wedge \\
& \operatorname{ret} 2=f(t 2, y) \wedge \\
t 2=y+1 \wedge & \operatorname{not}(\operatorname{ret} 1=\operatorname{ret} 2)
\end{array}
$$

```
}
```

```
}
```


Another way of handling UF

Get rid of uninterpreted functions (UFs) by rewriting

$\left(x_{1} \neq x_{2}\right) \vee\left(F\left(x_{1}\right)=F\left(x_{2}\right)\right) \vee\left(F\left(x_{1}\right) \neq F\left(x_{3}\right)\right)$
Ackermann Reduction
Flatten constraints: $\left(x_{1} \neq x_{2}\right) \vee\left(f_{1}=f_{2}\right) \vee\left(f_{1} \neq f_{3}\right)$
Functional consistency constraints:

$$
\begin{aligned}
& \left(x_{1}=x_{2} \Rightarrow f_{1}=f_{2}\right) \wedge \\
& \left(x_{1}=x_{3} \Rightarrow f_{1}=f_{3}\right) \wedge \\
& \left(x_{2}=x_{3} \Rightarrow f_{2}=f_{3}\right)
\end{aligned}
$$

Two possible encodings:
(Satisfiability checking) functional consistency constraints Λ flatten constraints (Validity checking) functional consistency constraints \Rightarrow flatten constraints

Difference logic

- Linear constraints

$$
\begin{aligned}
& x \geq y+c \\
& x \geq c
\end{aligned}
$$

$$
\left(s_{i}, f_{i}\right)
$$

Job Scheduling

- N jobs, T_{i} is execution time for job I
- Need to finish all jobs before T
- Some jobs cannot execute at the same time

$$
\begin{aligned}
& f_{i} \geq s_{i}+T_{i} \\
& s_{i} \geq f_{j} \vee s_{j} \geq f_{i} \\
& T \geq f_{i}
\end{aligned}
$$

Theory of Arrays

John McCarthy, 1962

- Model arrays as functions $\operatorname{read}(a, i) \quad$ write (a, i, v)

- Read-over-write axioms

$$
\begin{array}{ll}
\forall a, i, j, v: i=j \Rightarrow \operatorname{read}(\text { write }(a, i, v), j)=v & \text { write }(a, i, v)[i]=v \\
\forall a, i, j, v: i \neq j \Rightarrow \operatorname{read}(w r i t e(a, i, v), j)=\operatorname{read}(a, j) & \text { write }(a, i, v)[j]=a[j] \text { for } i \neq j
\end{array}
$$

$$
\operatorname{ITE}(i=j, v, \operatorname{read}(a, j))
$$

Apply this trick exhaustively, only read operations remain, Which can be further treated as uninterpreted functions. If we further use Ackermann reduction, all will become equality logic constraints

Theory of Inductive Data Types

```
nat := succ(pred:nat)|zero;
list := cons(car:tree, cdr:list)| null;
tree := node(children:list)| leaf(data: nat);
```

- Constructor, Selector, Tester
- function symbol \Leftrightarrow constructor, selector
- predicate symbol \Leftrightarrow each tester

Example: list of int

- Constructors: cons : (int, list) \rightarrow list, null : list

$$
\begin{aligned}
& \forall x_{1}, \ldots, x_{n} \cdot i s_{C}\left(C\left(x_{1}, \ldots, x_{n}\right)\right) \approx \text { true } \\
& \forall x_{1}, \ldots, x_{n} \cdot i s_{C^{\prime}}\left(C\left(x_{1}, \ldots, x_{n}\right)\right) \approx \text { false } \\
& \forall x_{1}, \ldots, x_{n} \cdot S_{C}^{(i)}\left(C\left(x_{1}, \ldots, x_{n}\right)\right) \approx x_{i} \quad \text { for all } i=1, \ldots, n \\
& \forall x_{1}, \ldots, x_{n} \cdot S_{C^{\prime}}^{(i)}\left(C\left(x_{1}, \ldots, x_{n}\right)\right) \approx t_{C^{\prime}}^{i} \quad \text { for all } i=1, \ldots, n^{\prime}
\end{aligned}
$$

Example: $\forall x$: list. $(x=$ null $\vee \exists y$: int, z : list. $x=\operatorname{cons}(y, z))$

Many other theories

- Theory of string
- Theory of bit vector
- Theory of linear arithmetic
- Theory of non-linear arithmetic
- Theory of integer linear arithmetic
-...

Combining theories

- Approach \#1

- Reduce all theories to a common logic (e.g., propositional logic), if possible.
- Approach \#2
- Combine decision procedures of the individual theories.
- The Nelson-Oppen method

Greg Nelson and Derek Oppen, simplification by cooperating decision procedures, 1979

Nelson-Oppen combination

The Theory-Combination problem

- Given theories T_{1} and T_{2} with signatures Σ_{1} and Σ_{2}
- The combined theory $T_{1} \oplus T_{2}$ has
- signature $\Sigma_{1} \cup \Sigma_{2}$ and
- the union of their axioms.
- Let ϕ be a $\Sigma_{1} \cup \Sigma_{2}$ formula.
- Does $\mathrm{T}_{1} \oplus \mathrm{~T}_{2} \vDash \phi$?

The Theory-combination problem

- Undecidable (even when the individual theories are decidable).
- Under certain restrictions, it becomes decidable.
- We will assume the following restrictions:
- T_{1} and T_{2} are decidable, quantifier-free, first-order theories with equality.
- Disjoint signatures (other than equality): $\Sigma_{1} \cap \Sigma_{2}=\emptyset$

The Nelson-Oppen method (preprocessing)

Purification: validity-preserving transformation of the formula after which predicates from different theories are not mixed.

1. Replace an `alien’ sub-expression ϕ with a new auxiliary variable a
2. Constrain the formula with $\mathrm{a}=\phi$

$$
\begin{gathered}
x_{1} \leq f\left(x_{1}\right) \\
\underbrace{x_{1} \leq a_{1} \wedge a_{1}=f\left(x_{1}\right)}_{\text {Pure expressions, shared variables }}
\end{gathered}
$$

The Nelson-Oppen method (easy case)

- Then we are left with several sets of pure expressions F_{1}, \ldots, F_{n}
- Each set belongs to some pure theory which we can decide
- ϕ is satisfiable $\Leftrightarrow F_{1} \wedge \cdots \wedge F_{n}$ is satisfiable
- If any F_{i} is unsatisfiable, then claim UNSAT (easy case!)

The Nelson-Oppen method (hard case)

- Q: How do different theories communicate?
- Hint: they are only "connected" by equality constraints
- A: Broadcasting newly discovered equality constraints to other theories
- Either UNSAT is reached (some F_{i} becomes UNSAT) Or there is no new equality constraints (all F_{1}, \ldots, F_{n} are SAT)

