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Paper presentation

• Grading rubrics
⁃ Preparation (15%)

v Sign up on Ed 5%

v Get feedback from TA 5%
v Practice Recording 5%

⁃ Presentation (70% + 15% bonus)
v Provide the necessary background 10%

v Explain the problem and main challenges 10%

v Illustrate the main ideas clearly 15%
v Show the main results 15% + demo (15% bonus)

v Limitations / related / future work discussion 10%

v Finish under time 10%  (15 ~ 20 minutes depending on the sign-ups)

⁃ Question Answering (15%)
v In-class QA (10%)
v Ed QA (5%)
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Week #Sign-ups

Week4: ml4sat 3

Week5: ml4smt 3

Week6: fm4ml 6

Week7: ml4code 2

Week8: dl4code 4

Week9: dl+logic 3

Week10: nv-sym 1



Lecture Overview

• Recap SAT solving

• MaxSAT and Incremental Solving

• Satisfiability modulo Theories (SMT)

• DPLL(T)

• Oppen-Nelson Combination
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Recap: DPLL Algorithm

Davis–Putnam–Logemann–Loveland (1962)

Better data structures

Better branching heuristics

Better backtracking



Recap: Ablation study of Modern SAT Solver

[Source: Katebi, Skallah & Marques-Silva 2011]

Importance of major features: Clause Learning > VSIDS > 2WL > Restart



MaxSAT and Incremental solving

• Maximum satisfiability
⁃ Local search (sub-optimal) 

⁃ Iterative SAT solving with cardinality constraints

• Incremental solving
⁃ Assumption variables trick
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An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

UNSAT instance



Cardinality Constraint Encodings
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decide the encoding. In our comparison we have included the naı̈ve encoding (men-
tioned in the introduction) and the encodings of Bailleux&Boufkhad and Warners.

Table 1. Comparison of different encodings for k (x1, . . . , xn).

Encoding #clauses #aux. vars decided
Naı̈ve

`
n

k+1

´
0 immediately

Sequential unary counter (LTn,k
SEQ) O(n · k) O(n · k) by unit prop.

Parallel binary counter (LTn,k
PAR) 7n� 3blog nc � 6 2n� 2 by search

Bailleux & Boufkhad [3] O(n2) O(n · log n) by unit prop.
Warners [4] 8n 2n by search

With respect to the number of clauses required, our encoding LTn,k
PAR is the best, as

can be seen from Table 1; however, it requires search to check whether the constraint is
fulfilled or not. Among the encodings requiring no search is that of Bailleux&Boufkhad
and our LTn,k

SEQ encoding. The latter performs better for small values of k, whereas the
former is better for large bounds.

Considering optimality of clausal encodings for k (x1, . . . , xn), we have shown
elsewhere that for all n 2 N and all k with 0  k < n � 1, each clausal (CNF)
encoding ofk (x1, . . . , xn) requires at least n clauses. Such a proof touches the realm
of Boolean function complexity [8]. It might be an interesting topic for future research
to see in how far results from this field are transferrable to the area of minimal clausal
encodings. We think that looking for improved lower bounds is worthwhile and still
expect much room for improvement here. Moreover, an experimental evaluation of the
different encodings should be of great practical value.
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Introducing auxiliary variables helps to reduce the number of clauses



SAT vs SMT

• SAT problem

• SMT problem

(𝑥!∨ 𝑥") ∧ (¬ 𝑥! ∨ ¬ 𝑥") Solution: {𝑥! = ⊤, 𝑥" =⊥}

clause literal

(𝑥 + 𝑦 < 3 ∨ 𝑐 𝑖 = 𝑥) ∧ ((𝑖 ≫ 2) = 𝑗 ∨ 𝑓 𝑥 = 𝑦)

Linear Integer
Arithmetic

Arrays Bit Vectors Uninterpreted
Function

Theory Solver(s) SAT Solver



A bit history
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State-of-the-art Applications

10https://github.com/dafny-lang/dafny SMT/Z3 tutorial: https://leodemoura.github.io/slides.html

https://github.com/dafny-lang/dafny
https://leodemoura.github.io/slides.html


Propositional Logic

• A set of primitive symbols
⁃ 𝑝, 𝑞, 𝑟, …

• A set of operator symbols (aka. logical connectives)
⁃ ¬, ∨, ∧, →, ↔

• Formula
⁃ A primitive symbol is a formula
⁃ “A logical connective + formulas” is also a formula

• Negation Normal Form (NNF)
⁃ Negation is only applied to variables/symbols
⁃ Only AND, OR can be used

• Conjunctive Normal Form (CNF)
⁃ Conjunction of disjunctions
⁃ Tseytin transformation



First-order Logic

• Terms
⁃ Variables
⁃ Functions 𝑓(𝑡!, … , 𝑡𝑛)

v Constants are functions with arity 0

• Predicate
⁃ 𝑃(𝑡!, … , 𝑡")
⁃ A bit like “primitive symbols” in proposal logic

• Formula
⁃ Logical connectives
⁃ Quantifiers

• Sentence
⁃ Free variable (i.e.,  not bound by quantifiers)
⁃ FOL formula without free variables
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First-order logic

• Signature Σ
⁃ A set of functions and predicates (aka, non-logical symbols)

• Σ-formula
⁃ All functions and predicates are in Σ

• Σ-theory
⁃ A set of Σ-formula

⁃ A theory only restricts functions and predicates

• Model (aka structure)
⁃ A mapping from variables, constants, nonlogical symbols to domain elements
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DPLL(T) Basic
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1 Algorithm DPLL(T)(F):
2 Fp ← encode (F)
3 while true do
4 Sp, res ← SAT(Fp)

5 if res = ⊥ then return false
6 G ← decode(Sp)
7 T-res ← T-Solve(G)

8 if T-res = ⊤ then return true
9 Fp ← Fp ∧ ¬Sp

10 end

𝑥 = 𝑦 ∧
( 𝑦 = 𝑧 ∧ ¬ (𝑥 = 𝑧) ∨ 𝑥 = 𝑧)

Theory Solver(s)

SAT Solver
𝐴 ∧

( 𝐵 ∧ ¬𝐶 ∨ 𝐶)

A: x=y; B: y=z; C: x=z



DPLL(T) Basic + optimization

• 𝑥 = 1 ∧ (𝑥 = 2 ∨ 𝑥 = 3)
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1 Algorithm DPLL(T)(F):
2 Fp ← encode (F)
3 while true do
4 〈Sp, res〉 ← SAT(Fp)

5 if res = ⊥ then return false
6 G ← decode(Sp)
7 〈G′, res〉 ← T-Solve(G)

8 if res = ⊤ then return true
9 Fp ← Fp ∧ ¬ encode(G′)

10 end ¬𝑆#
Disable the UNSAT core

instead of the entire assignment



DPLL(T) Basic + optimization
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1 Algorithm CDCL():
2 while true do
3 α ← α ∪ {Choose()}
4 while BCP() = conflict do
5 backtrack-level ← AnalyzeConflict()

6 if backtrack-level < 0 then
7 return false
8 else
9 BackTrack()

10 end

11 end
12 if α is full assignment then
13 return true
14 end

15 end

1 Algorithm CDCL(T)():
2 while true do
3 α ← α ∪ {Choose()}
4 while BCP() = conflict do
5 backtrack-level ← AnalyzeConflict()

6 if backtrack-level < 0 then
7 return false
8 else
9 BackTrack()

10 end

11 end
12 if α is full assignment then
13 if T-Solver(α) then return true
14 AddClauses()

15 end

16 end



Theory of EUF
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convenient representation of formulas, as SMT can reason about equality, linear
arithmetic, bit-vectors, and other first-order theories.

Example 2.1 (First-Order Theories). Examples for first-order theories are:

• Theory of Equality Logic introduces equality (=).

¬(x1 = x2) ^ x1 = 4

• Theory of Linear Arithmetic adds arithmetic functions, such as + and �,
and arithmetic predicates, like = or <.

(3y + 2x� 1 = 0) ^ (0 < x)

• Theory of Bit Vectors allows the use of binary numbers and binary oper-
ators, such as bit-shift (�), XOR (�), or binary negation (⇠).

(a � 2) = c ^ c� d

3 Theory of Equality Logic With Uninterpreted
Functions

The theory of equality logic with uninterpreted functions (EUF) extends Boolean
logic and adds the equality predicate (=). In EUF the equality is a binary pred-
icate, which evaluates to True or False based on the axioms for an equivalence
relation:

8x. x = x (Reflexivity)

8x. 8y. x = y =) y = x (Symmetry)

8x. 8y. 8z. x = y ^ y = z =) x = z (Transitivity)

Compared to Boolean logic variables in EUF are non-binary and are defined
over an infinite domain, such as N or R. Functions in EUF are uninterpreted
and only maintain the property of functional congruence:

Definition 3.1 (Functional Congruence)
For each n > 0 and n-ary function f

8x̄, ȳ.
n̂

i=1

xi = yi =) f(x̄) = f(ȳ)

By using uninterpreted functions the details and characteristics of functions
are ignored. This can generalize and simplify theorems and proofs. However,
some properties of a function can be lost when replacing the function with an
uninterpreted function.

2

convenient representation of formulas, as SMT can reason about equality, linear
arithmetic, bit-vectors, and other first-order theories.

Example 2.1 (First-Order Theories). Examples for first-order theories are:

• Theory of Equality Logic introduces equality (=).

¬(x1 = x2) ^ x1 = 4

• Theory of Linear Arithmetic adds arithmetic functions, such as + and �,
and arithmetic predicates, like = or <.

(3y + 2x� 1 = 0) ^ (0 < x)

• Theory of Bit Vectors allows the use of binary numbers and binary oper-
ators, such as bit-shift (�), XOR (�), or binary negation (⇠).

(a � 2) = c ^ c� d

3 Theory of Equality Logic With Uninterpreted
Functions

The theory of equality logic with uninterpreted functions (EUF) extends Boolean
logic and adds the equality predicate (=). In EUF the equality is a binary pred-
icate, which evaluates to True or False based on the axioms for an equivalence
relation:

8x. x = x (Reflexivity)

8x. 8y. x = y =) y = x (Symmetry)

8x. 8y. 8z. x = y ^ y = z =) x = z (Transitivity)

Compared to Boolean logic variables in EUF are non-binary and are defined
over an infinite domain, such as N or R. Functions in EUF are uninterpreted
and only maintain the property of functional congruence:

Definition 3.1 (Functional Congruence)
For each n > 0 and n-ary function f

8x̄, ȳ.
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A theory T is a set of formula (can be thought as axioms, i.e, “extra constraints”)

𝜙 is T-satisfiable if there exists a structure satisfies both 𝜙 and T



Animations of deciding EUF
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Exercises of EUF
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The satisfiability of the formula F can be determined with the following the-
orem (Shostak, 1978).

Theorem 1
F is satisfiable () @si, ti 2 T such that si ⇠ ti and (si 6= ti) 2 S.

Proof Idea.

=) (Soundness). Assume F is satisfiable. There has to exists a model for F .
All si, ti 2 T with si ⇠ ti must have the same value in the model, because the
model satisfies reflexivity, symmetry, transitivity, and functional congruence.
Hence there cannot be an inequality (si 6= ti) 2 S.

(= (Completeness). Assume there are no si, ti 2 T such that si ⇠ ti and
(si 6= ti) 2 S. The goal is to construct a model for F . This is done by
constructing a Herbrand model for F . A Herbrand model assigns a value to
each term in the term universe T1 =

S1
i=0 Ti. Ti is inductively defined as

follows:
T0 = T, and Ti+1 = {f(t1, . . . , tr) | ti 2 Ti} [ Ti

where f ranges over all function symbols that appear in F . The term universe
contains all possible terms that can be constructed by using all constants and
function symbols that appear in F . The height of the term universe is infinite
because functions can be arbitrarily nested.

For all terms t 2 T , the model can directly assign values based on ⇠. For
all remaining terms in the term universe, values are assigned with an inductive
construction based on functional congruence.

If for a term t = f(x1, . . . , xr) 2 Tj+1�Tj there exists a functional congruent
term in Tj , then the model can assign the value from the functional congruent
term to t. Otherwise the model assigns a new value to t. The new value is
obtained by evaluating f(x1, . . . , xr) with the values of its arguments. For all
arguments xi, values already have been assigned as they are all contained in Tj .

The correctness of this construction is then proven by induction over the
height of the term universe (Shostak, 1978).

Example 3.2 (Congruence Closure Algorithm: unsatisfiable formula).

f(a, b) = a ^ f(f(a, b), b) 6= a

• initial partition:

{{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• impose f(a, b) = a:

{{a, f(a, b)}, {b}, {f(f(a, b), b)}}

4

• a ⇠ f(a, b), with functional congruence f(a, b) ⇠ f(f(a, b), b):

{{a, f(a, b), f(f(a, b), b)}, {b}}

The partition yields f(f(a, b), b) ⇠ a, but the formula contains the inequality
f(f(a, b), b) 6= a. With Theorem 1 the formula is unsatisfiable.

Example 3.3 (Congruence Closure Algorithm: satisfiable formula).

a = b ^ b = c ^ g(f(a), b) = g(f(c), a) ^ f(a) 6= b

• initial partition:

{{a}, {b}, {c}, {f(a)}, {f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• impose a = b:

{{a, b}, {c}, {f(a)}, {f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• impose b = c:

{{a, b, c}, {f(a)}, {f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• a ⇠ c, with functional congruence f(a) ⇠ (c):

{{a, b, c}, {f(a), f(c)}, {g(f(a), b)}, {g(f(c), a)}}

• f(a) ⇠ f(c) and b ⇠ a, with functional congruence g(f(a), b) ⇠ g(f(c), a):

{{a, b, c}, {f(a), f(c)}, {g(f(a), b), g(f(c), a)}}

There are no inequalities that contradict ⇠. From Theorem 1 follows that the
formula is satisfiable.

Satisfiability of Arbitrary EUF-Formulas

The congruence closure algorithm can only decide the satisfiability for conjunc-
tions of equalities and inequalities. The satisfiability for an arbitrary formula in
EUF is determined by determining the unsatisfiability of the disjunctive normal
form (DNF) of the negated formula. A DNF is unsatisfiable if all disjuncts are
unsatisfiable. As each disjunct in a DNF is a conjunction, the unsatisfiability
of each disjunct is determined with the congruence closure algorithm.

The disadvantage of this approach is that the DNF of a formula can be
exponentially larger than the original formula. This results in the decision pro-
cedure for an arbitrary formula in EUF having exponential worst-case runtime.
That is expected because the decision problem for arbitrary formulas in EUF is
NP-complete (Shostak, 1978).

5

UNSAT

SAT



A simple application of EUF
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int fun1(int y) {
int x, z;
z = y; 
y = x; 
x = z;

return x * x;
}

int fun2(int y) {
return y * y;

}
𝑟𝑒𝑡2 = 𝑦 ∗ 𝑦

𝑧 = 𝑦 ∧
𝑦1 = 𝑥 ∧
𝑥1 = 𝑧 ∧

𝑟𝑒𝑡1 = 𝑥1 ∗ 𝑥1 𝑧 = 𝑦 ∧
𝑦1 = 𝑥 ∧
𝑥1 = 𝑧 ∧

𝑟𝑒𝑡1 = 𝑥1 ∗ 𝑥1 ∧
𝑟𝑒𝑡2 = 𝑦 ∗ 𝑦 ∧

𝑛𝑜𝑡 (𝑟𝑒𝑡1 = 𝑟𝑒𝑡2)

𝑧 = 𝑦 ∧
𝑦1 = 𝑥 ∧
𝑥1 = 𝑧 ∧

𝑟𝑒𝑡1 = 𝑓(𝑥1, 𝑥1) ∧
𝑟𝑒𝑡2 = 𝑓(𝑦, 𝑦) ∧
𝑛𝑜𝑡 (𝑟𝑒𝑡1 = 𝑟𝑒𝑡2)



A simple application of EUF
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int fun1(int y) {
int x, z;
z = y; 
y = x; 
x = z;

return x * (x+1);
}

int fun2(int y) {
return (y+1) * y;

}
𝑡2 = 𝑦 + 1 ∧
𝑟𝑒𝑡2 = 𝑡2 ∗ 𝑦

𝑧 = 𝑦 ∧
𝑦1 = 𝑥 ∧
𝑥1 = 𝑧 ∧

𝑡1 = 𝑥1 + 1 ∧
𝑟𝑒𝑡1 = 𝑥1 ∗ 𝑡1

𝑧 = 𝑦 ∧
𝑦1 = 𝑥 ∧
𝑥1 = 𝑧 ∧

𝑡1 = 𝑔(𝑥1,1) ∧
𝑟𝑒𝑡1 = 𝑓 𝑥1, 𝑡1 ∧
𝑡2 = 𝑔 𝑦, 1 ∧
𝑟𝑒𝑡2 = 𝑓(𝑡2, 𝑦) ∧
𝑛𝑜𝑡 (𝑟𝑒𝑡1 = 𝑟𝑒𝑡2)

“partially interpreted functions”

∀𝑥, 𝑦 𝑓 𝑥, 𝑦 = 𝑓(𝑦, 𝑥)



Another way of handling UF

22

𝜑!"# 𝜑!

(𝑥!≠ 𝑥") ∨ (𝐹 𝑥! = 𝐹(𝑥")) ∨ (𝐹 𝑥! ≠ 𝐹 𝑥# )

Two possible encodings: 
(Satisfiability checking) functional consistency constraints ⋀ flatten constraints
(Validity checking) functional consistency constraints ⟹ flatten constraints

Flatten constraints: (𝑥!≠ 𝑥") ∨ (𝑓! = 𝑓") ∨ (𝑓! ≠ 𝑓#)

Functional consistency constraints:

𝑥! = 𝑥" ⇒ 𝑓! = 𝑓" ∧
𝑥! = 𝑥# ⇒ 𝑓! = 𝑓# ∧
𝑥" = 𝑥# ⇒ 𝑓" = 𝑓#

Get rid of uninterpreted functions (UFs) by rewriting

Ackermann Reduction



Difference logic

• Linear constraints

23

𝑥 ≥ 𝑦 + 𝑐

𝑥 ≥ 𝑐

Job Scheduling
- N jobs,  T> is execution time for job I
- Need to finish all jobs before T
- Some jobs cannot execute at the same time

(𝑠?, 𝑓?)

𝑓? ≥ 𝑠? + 𝑇?
𝑠? ≥ 𝑓@ ∨ 𝑠@ ≥ 𝑓?

𝑇 ≥ 𝑓?



Theory of Arrays

• Model arrays as functions

• Read-over-write axioms

24

𝑟𝑒𝑎𝑑(𝑎, 𝑖) 𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑖, 𝑣)

∀ 𝑎, 𝑖, 𝑗, 𝑣: 𝑖 = 𝑗 ⇒ 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑗 = 𝑣
∀ 𝑎, 𝑖, 𝑗, 𝑣: 𝑖 ≠ 𝑗 ⇒ 𝑟𝑒𝑎𝑑 𝑤𝑟𝑖𝑡𝑒 𝑎, 𝑖, 𝑣 , 𝑗 = 𝑟𝑒𝑎𝑑(𝑎, 𝑗)

𝐼𝑇𝐸(𝑖 = 𝑗, 𝑣, 𝑟𝑒𝑎𝑑 𝑎, 𝑗 ) Apply this trick exhaustively, 
only read operations remain,
Which can be further treated as uninterpreted functions.
If we further use Ackermann reduction, 
all will become equality logic constraints

contributed articles
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of(y). In this case, we say arrays behave 
in a monotone way with respect to in-
heritance. Using first-order axioms, we 
specify in Figure 3 that the inheritance 
relation sub(x, y) is a partial order sat-
isfying the single inheritance property 
and that the array type constructor 
array-of(x) is monotone with respect to 
inheritance. 

The theory of object inheritance il-
lustrates why SMT solvers targeted at 
expressive program analysis benefit 
from general support for quantifiers. 

All the applications we have treat-
ed so far also rely on a fundamental 
theory we have not described: the the-
ory of equality and free functions. The 
axioms used for object inheritance 
used the binary predicate sub and the 
function array-of. All we know about 
array-of is that it is monotone over 
sub, and, for this reason, we say the 
function is free. Decision procedures 
for free functions are particularly im-
portant because it is often possible to 
reduce decision problems to queries 
over free functions. Given a conjunc-
tion of equalities between terms using 
free functions, a congruence closure 
algorithm can be used to represent the 
smallest set of implied equalities. This 
representation can help check if a mix-
ture of equalities and disequalities are 
satisfiable, checking that the terms on 
both sides of each disequality are in 
different equivalence classes. Efficient 
algorithms for computing congruence 
closure are the subject of long-running 
research17 in which terms are repre-
sented as directed acyclic graphs, or 
DAGS. Figure 4 outlines the operation 
of a congruence closure algorithm on 
the following limited example 
a = b, b = c, f(a, g(a)) ≠ f(b, g(c)) 

In Figure 4(a), we spelled out a DAG 
for all terms in the example; in Figure 
4(b), the equivalences a = b and b = c are 
represented by dashed lines; in Figure 
4(c), nodes g(a) and g(c) are congruent 
because a = c is implied by the first two 
equalities; and finally, in Figure 4(d), 
nodes f(a, g(a)) and f(b, g(c)) are also 
congruent, hence the example is unsat-
isfiable due to the required disequality 
f(a, g(a)) ≠ f(b, g(c)). 

Modeling. SMT solvers represent 
an interesting opportunity for high-
level software-modeling tools. In some 
contexts these tools use domains from 
mathematics (such as algebraic data-
types, arrays, sets, and maps) and have 
also been the subject of long-running 
research in the context of SMT solvers. 
Here, we introduce the array domain 
that is frequently used in software 
modeling. 

The theory of arrays was introduced 
by John McCarthy in a 1962 paper28 
as part of forming a broader agenda 
for a calculus of computation. It in-
cluded two functions: read and write. 
The term read(a, i) produces the val-
ue of array a at index i, and the term 
write(a, i, v) produces an array equal 
to a, except for possibly index i, which 
maps to v. To make the terminology 
closer to how arrays are read in pro-
grams, we write a[i] instead of read(a, 
i). These properties are summarized 
through two equations: 

write(a, i, v)[i] = v 
write(a, i, v)[j] = a[j] for i ≠ j 

They state that the result of reading 
write(a, i, v) at index j is v for i = j. Read-
ing the array at any other index produc-
es the same value as a[j]. Consider, for 
example, the program swap, swapping 
the entries a[i] and a[j]. 

void swap (int [] a, int i, int j)

{
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}

The statement that a[i] contains the 
previous value of a[j]can be expressed 
as
a[j] = write(write(a, i, a[j]), j, a[i])[i] 

SMT solvers are  
a good fit for 
symbolic execution 
because the 
semantics of 
most program 
statements are 
easily modeled 
using theories 
supported by  
these solvers. 

Figure 4. Example of congruence closure. 
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Theory of Inductive Data Types

• Constructor, Selector, Tester

• function symbol ⟺ constructor, selector

• predicate symbol ⟺ each tester
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Theories of Inductive Data Types

An inductive data type (IDT) defines one or more
constructors, and possibly also selectors and testers.

Example: list of int
• Constructors: cons : (int, list) → list, null : list
• Selectors: car : list → int, cdr : list → list
• Testers: is cons, is null

The first order theory of a inductive data type associates a
function symbol with each constructor and selector and a
predicate symbol with each tester.
Example: ∀x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y, z))
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data types. Note that because we assume the existence of constants of sort σi (for each i),
these sorts are automatically well-founded.

In some cases, it will be necessary to distinguish between finite and infinite sorts and
constructors:

• A sort s is finite iff there are only finitely many ground Σ-terms of sort s;

• a constructor C is finite if it is nullary or if all of its argument sorts are finite.

As we will see, consistent with the above terminology, our semantics will interpret finite,
resp. infinite, τ -sorts indeed as finite, resp. infinite, sets.

We denote by T (Σ) the set of (well-sorted) ground terms of signature Σ or, equivalently,
the many-sorted term algebra over that signature. The IDTs with functions and predicates
denoted by the symbols of Σ are specified by the set of universally quantified equations
given below. For reasons explained below, we assume that associated with every selector

S(i)
C : τ → s is a distinguished ground term tiC of sort s containing no selectors (or testers).

Equational Specification of IDTs. Given a signature Σ of the form above, the associated
inductive data type is specified by the following set E of axiom schemas for each sort τ in
Σ and distinct constructors C : s1 · · · sn → τ and C ′ : s′1 · · · s

′
n′ → τ :

∀x1, . . . , xn. isC(C(x1, . . . , xn)) ≈ true

∀x1, . . . , xn. isC′(C(x1, . . . , xn)) ≈ false

∀x1, . . . , xn. S(i)
C (C(x1, . . . , xn)) ≈ xi for all i = 1, . . . , n

∀x1, . . . , xn. S(i)
C′ (C(x1, . . . , xn)) ≈ tiC′ for all i = 1, . . . , n′

The last axiom specifies what happens when a selector is applied to the “wrong” con-
structor. Note that there is no obviously correct thing to do in this case since it would
correspond to an error condition in a real application. Our axiom specifies that in this
case, the result is the designated ground term for that selector. This is different from other
treatments (such as [7, 20, 21]) where the application of a selector to the wrong constructor
is treated as the identity function. The main reason for this difference is that the identity
function would not always be well-sorted in many-sorted logic. It is important to notice
that as a result, our procedure may give counter-intuitive results if given as input a formula
whose satisfiability depends on the application of a selector to the wrong constructor. One
possible approach for dealing with this difficulty is discussed in Section 6.2.

By standard results in universal algebra we know that E admits an initial model R. We
refer the reader to [12] for a thorough treatment of initial models. For our purposes, it will
be enough to mention the following properties that R enjoys by virtue of being an initial
model.

Lemma 2.1. Where ≈E is the equivalence relation on Σ-terms induced by E, let T (Σ)/≈E

be the quotient of the term algebra T (Σ) by ≈E .

1. For all ground Σ-terms t1, t2 of the same sort, t1 ≈E t2 iff R satisfies t1 ≈ t2.

2. R is isomorphic to T (Σ)/≈E .

5

More generally, we are interested in any set of (possibly mutually recursive) inductive
data types, each of which is built with one or more constructors. Each constructor has
selectors that can be used to retrieve the original arguments as well as a tester which
indicates whether a given term was constructed using that constructor. As an example of
the more general case, suppose we want to model lists of trees of natural numbers. Consider
a set of three inductive data types: nat, list, and tree. The type nat has two constructors:
zero, which takes no arguments; and succ, which takes a single argument of type nat and
has the corresponding selector pred. The list type is as before, except that we now specify
that the elements of the list are of type tree. The tree type in turn has two constructors:
node, which takes an argument of type list and has the corresponding selector children, and
leaf, which takes an argument of type nat and has the corresponding selector data. We can
represent this set of types using the following convenient notation based on that used in
functional programming languages:

nat := succ(pred : nat) | zero;
list := cons(car : tree, cdr : list) | null;
tree := node(children : list) | leaf(data : nat);

The testers for this set of data types are is succ, is zero, is cons, is null, is node, and is leaf.
Propositions about a set of inductive data types can be captured in a sorted first-order

language which closely resembles the structure of the data types themselves in that it has
function symbols for each constructor and selector, and a predicate symbol for each tester.
For instance, propositions that we would expect to be true for the example above include
the following:

1. ∀x : nat. succ(x) "≈ zero,

2. ∀x : list. x ≈ null ∨ is cons(x), and

3. ∀x : tree. is leaf(x) → (data(x) ≈ zero ∨ is succ(data(x))).

In this paper, we discuss a procedure for deciding such formulas. We focus on satisfia-
bility of a set of literals, which (through well-known reductions) can be used to decide the
validity of universal formulas. We do not consider quantifier elimination, which can be used
to decide the full theory, referring the reader instead to related work such as [7, 9, 20, 21].

There are three main contributions of this work over earlier work on the topic. First,
our setting is more general: we allow mutually recursive inductive types each with multiple
constructors, selectors, and testers, and we use the more general setting of many-sorted
logic. The rationale for a many-sorted approach is that it more closely corresponds to
potential applications such as analysis of programming languages. In particular, the well-
sortedness requirements rule out many syntactical constructs that would not make sense in
practice.

The second contribution is in presentation. We present the theory itself in terms of
an initial model rather than axiomatically as is often done. Also, the presentation of the
decision procedure is given as abstract rewrite rules, making it more flexible and easier to
analyze than if it were given imperatively.

Finally, as described in Section 5, the flexibility provided by the abstract algorithm
allows us to describe a new strategy with significantly improved practical efficiency.
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Many other theories

• Theory of string

• Theory of bit vector

• Theory of linear arithmetic

• Theory of non-linear arithmetic

• Theory of integer linear arithmetic

• …
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Combining theories

• Approach #1
⁃ Reduce all theories to a common logic (e.g., propositional logic), if possible.

• Approach #2
⁃ Combine decision procedures of the individual theories. 

⁃ The Nelson-Oppen method

Greg Nelson and Derek Oppen, simplification by cooperating decision procedures, 1979 



Nelson-Oppen combination
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The Theory-Combination problem

• Given theories T1 and T2 with signatures S1 and S2

• The combined theory T1 ⨁ T2 has

⁃ signature S1 ∪ S2 and 

⁃ the union of their axioms.

• Let f be a S1 ∪ S2 formula.

• Does T1 ⨁ T2 ⊨ f ?



The Theory-combination problem

• Undecidable (even when the individual theories are decidable).

• Under certain restrictions, it becomes decidable.

• We will assume the following restrictions:  

⁃ T1 and T2 are decidable, quantifier-free, first-order theories with equality.

⁃ Disjoint signatures (other than equality):   S1 ∩ S2 = ∅



The Nelson-Oppen method (preprocessing)

Purification:   validity-preserving transformation of the formula after 
which predicates from different theories are not mixed.

1. Replace an `alien’ sub-expression f with a new auxiliary variable a

2. Constrain the formula with a = f

Arithmetic

Uninterpreted Functions Pure expressions, shared variables

𝑥! ≤ 𝑓(𝑥!)

𝑥! ≤ 𝑎! ∧ 𝑎! = 𝑓(𝑥!)



The Nelson-Oppen method (easy case)

• Then we are left with several sets of pure expressions 𝐹!, … , 𝐹"
• Each set belongs to some pure theory which we can decide

• 𝜙 is satisfiable ⟺ 𝐹! ∧ ⋯∧ 𝐹" is satisfiable

• If any 𝐹# is unsatisfiable, then claim UNSAT (easy case!)



The Nelson-Oppen method (hard case)

• Q: How do different theories communicate?
⁃ Hint: they are only “connected” by equality constraints

• A: Broadcasting newly discovered equality constraints to other 
theories

• Either UNSAT is reached (some 𝐹# becomes UNSAT) 
Or there is no new equality constraints (all 𝐹!, … , 𝐹" are SAT)


