
(CS838: Topics in parallel computing, CS1221, Tue, May 4, 1999, 8:00-9:15 a.m., Pavel Tvrdik)

Section #26: Parallel tree contraction

26.1 Rake and Compress

In this lecture, we describe basic parallel techniques for tree contraction. Given a rooted tree, with

labeled nodes and edges, the task is to reduce it to one single node. This problem appears in many

areas, but the most important case is expression evaluation, where the tree represents an expression,

every node is an operation or function, and subtrees are the argument expressions. One possible parallel

approach to tree contraction is D&C, but it requires complicated algorithms for splitting arbitrary trees

into subtrees of equal size and it is a di�cult problem.

Much easier is to contract a tree bottom-up. Processors are assigned leaves of the tree and perform

local modi�cations of the tree by removing leaves. This operation is called Rake (see Figure 26.1(a)).

But Rake itself is not su�cient for parallel tree contraction, for two reasons. 1) If the tree is thin and

tall, therefore the height of the tree is linear rather than logarithmic (the worst case is just a linked

list), then Rake cannot be applied in parallel. 2) Rake itself tends to linearize the original tree.

The complementary operation to Rake is Compress and it is based on pointer jumping (see

Figure 26.1(b)). Ideally, Compress and Rake can be applied in parallel to disjoint parts of a tree.

Compress produces leaves for Rake and Rake produces linear lists for Compress.

(b)(a)

Figure 26.1. Two basic operations for contracting trees. (a) Rake. (b) Compress.

26.2 Basic tree contraction CREW PRAM algorithm

Let us describe a generic parallel contraction algorithm, called Basic Contract, on an arbitrary tree

T = (V;E) with jV j = n. Assume the following data structures:

Input: P [1; : : : ; n]; /* P [x] is a pointer to the parent of x */

children[1; : : : ; n]; /* children[v] = fv

1

; : : : ; v

k

g { pointers to all children */

index[1; : : : ; n]; /* index[v

i

] = i { each child v knows its index in children[P [v]] */

Auxil: label[1; : : : ; n]; /* label[v] = ff

1

; : : : ; f

k

g, where f

i

2 fU;Mg */

/* f

i

=M = marked i� a child supplied its value to its parent */

UnMarkChil(x) returns int; /* function returning the # of unmarked children */

Output: the value accumulated in the root

1



/* initialize the data structures */

for all nodes v 2 T do in parallel initialize(v);

while UnMarkChil(root) > 0 do

f for all nodes v 2 T do in parallel

if P [v] 6= nil then

f case UnMarkChil[v] of

0: f Rake(v); label[P [v]][index[v]] :=M ; P [v] := nil; g

1: if UnMarkChil[P [v]] = 1 then f Compress(v); P [v] := P [P [v]]; g

endcase gg;

Rake(root);

Theorem 1 After O(log

4=3

n) applications of Basic Contract to n-node tree T , it is reduced to a

root. If Rake and Compress take O(1) time, then the parallel time with p = �(n) is O(log n).

26.3 Binary expression tree evaluation

This generic approach can be applied to arbitrary tree. We will show a speci�c implementation of this

algorithm for parallel evaluation of binary expressions. If T represents an arithmetic expression, then

internal nodes represent operators and leaves contain constant input values. For simplicity, we will

consider only expressions with + and � and integer constant values in leaves (see Figure 26.2(a)).

(e)(d)(c)(b)(a)

1

1

x

x x

x

x

x

x xx

x

x

x

x xx

x x

+

+

+

+

+

+

+
5

2

3

+6

3
10

2

+ 2

+
2 3

4

1

4

3

2
+3

+4

2

1

5 5
+

+

+

+

2 3

3

4

5

1 +

+
5

3

+

2

4

+6

4

2
26

11

Figure 26.2. An example of the Basic Contract evaluation of an expression tree. (a) The expression

tree. (b) Initialization and the e�ect of the �rst parallel Rake. (c)-(e) Three parallel steps ending up

with one essential and two non-essential chains.

The implementation of expression tree evaluation needs the following data structures: Every edge

hv; P [v]i is labeled with a linear function f

v

(x) = a

v

x+ b

v

, where a

v

; b

v

are integer constants. Initially

f

v

(x) = x for all v 2 T , v 6= root. Every internal node v represents an operator op[v]. Every leaf v has

value val[v]. The Rake of a leaf v means placing f

v

(val[v]) on the edge hv; P [v]i. If an internal node v

with operator � knows values of both left son l and right son r, then its subtree can be replaced by a

leaf with constant value val[v] = f

l

(val[l])� f

r

(val[r]) computed by the Rake operation, where f

l

and

f

r

are function labels of edges hl; vi and hr; vi, respectively.

An internal node that is a part of a chain of nodes with one evaluated argument can be compressed.

Figure 26.3 shows a general case. Consider an internal node v with op[v], whose right son r supplied

its constant value val[r] by placing c

r

= f

r

(val[r]) = a

r

val[r] + b

r

on edge hr; vi. Assume that the

left child l does not know its value (i.e., its subtree has not been evaluated yet). Then node v can be

compressed, i.e., jumped over, if its contribution is properly incorporated into the modi�ed tree. Hence

if l sets P [l] := P [v], then the new edge must be labeled by a linear function that combines functions

attached to the original edges hl; vi and hv; P [v]i plus the value c

r

. If this new linear function is denoted

f

0

l

(x) = a

0

l

x + b

0

l

, then f

0

l

(x) = a

v

((a

l

x + b

l

)op[v]c

r

) + b

v

, which after simpli�cation gives coe�cients a

0

l

and b

0

l

.

The code of Basic Contract is modi�ed now as follows:

2



’ ’ ’
v vf (x)=a x + bv

vv

f (x)=a x + b
op[v]

c = f (val[r])
l l l

r r

P[v]

vf (x)=a x + b
P[v]

op[v]

c = f (val[r])r

f (x)=a x + b

r

l l l

rl

v

l r

v

Figure 26.3. The e�ect of operation Compress(l) in a binary expression tree.

Input: P [1; : : : ; n]; /* P [x] is a pointer to the parent of x */

val[1; : : : ; n]; /* val[v] { value in v after its subtree is evaluated */

op[1; : : : ; n]; /* op[v] is the operator of an internal node v */

side[1; : : : ; n]; /* side[v] 2 fL;Rg */

Auxil: (a; b)[1; : : : ; n]; /* a[v] and b[v] are labels of edge hv; P [v]i */

contr[1; : : : ; n][L;R] /* auxiliary array to store contributions from children */

UnMarkChil(x) returns int; /* function returning the # of unmarked children */

Output: the value of the expression tree stored in the root

/* initialize the data structures */

for all nodes v 2 T do in parallel /* initialize(v) */

if UnMarkChil(v) = 0 /* leaves */

then fcontr[P [v]][side[v]] := val[v]; P [v] := nil; g

else (a; b)[v] := (1; 0); /* internal nodes */

while UnMarkChil(root) > 0 do

f for all nodes v 2 T do in parallel

if P [v] 6= nil then

f case UnMarkChil[v] of

0: f val[v] := eval(op[v]; contr[v][L]; contr[v][R]); /* Rake(v) */

contr[P [v]][side[v]] := a[v]val[v] + b[v]; P [v] := nil; g /* Mark */

1: if UnMarkChil[P [v]] = 1 then /* Compress(v) */

f (a; b)[v] := simplify((a; b)[v]; (a; b)[P [v]]; op[P [v]]; contr[P [v]][side sibl[v]]);

P [v] := P [P [v]]; g

endcase gg;

val[root] := eval(op[root]; contr[root][L]; contr[root][R]);

26.4 Work-optimal EREW PRAM tree contraction

26.4.1 Discussion of the Basic Contract approach

The previous algorithm has two drawbacks:

� It is not work-optimal. The number of operations it requires is n logn, in contrast to O(n)

operations required in sequential evaluation. The reason behind this ine�ciency is that whenever

a Compress is performed, we get two chains but at most of them is essential, needed for

evaluation of the accumulated value in the root. The other chain is nonessential for the total

value, but even though, processors keep contracting it and spending operations on that. Hence if

T is a linear list, we get the same problem as with list ranking algorithm based on pointer jumping.

� It requires CREW PRAM. A head of a chain, i.e., a node with 2 unevaluated children among

which one is the last node of a linked list of nodes that have one child evaluated, becomes, thanks

to compressing, the parent of all the nodes from the linked list (see Figure 26.4). The head cannot

be jumped over until its second child submits its value (i.e., is marked). Until then, all these

waiting nodes will attempt to read the counter UnMarkChil[P [v]] and once this counter is set to

1, they all will read P [P [v]].

3



55

2

4

7

2

7

4

Figure 26.4. Basic Contract requires Concurrent-Read PRAM.

26.4.2 Shunt operation

Both di�culties can be overcome if the contraction will not produce linear chains at all. A chain is

produced when the tree contains a binary subtree, where each internal vertex has one child that is a leaf

and one that is not. After a parallel Rake operation on all leaves, such a subtree becomes a linear list.

If Rake and Compress is always applied simultaneously, i.e., if every individual Rake operation is

followed immediately by a Compress of its sibling, chains cannot be formed. This combined operation

is called Shunt. Figure 26.5 illustrates its e�ect. Note that Shunt is applied to a leaf node and as a

side e�ect, its parent is compressed, disconnected, and therefore disallowed to form non-essential chains

in the future. Due to this side e�ect, Shunt must be applied carefully. There are several situations in

which parallel execution of Shunt operations could cause problems.

v

Figure 26.5. Shunt(v) combines the e�ect of Rake(v) and Compress(sibling[v]).

� Shunt is not de�ned for children of the root. That's because Compress cannot be applied

to the root.

� Shunt cannot be performed on two siblings simultaneously. Not only would it require

Concurrent-Read PRAM, but it could lead to a nondeterministic result due to parallel racing.

Both leaves should be raked (i.e., disconnected) and compressed (i.e., jump over the parent) at

the same time, and so the �nal status is not well de�ned. Figure 26.6 shows the situation.

?

rll r

Figure 26.6. Shunt applied to two siblings in parallel is nondeterministic.

� Shunt cannot be performed on two adjacent leaves in left-to-right ordering. This time,

we would disconnect the tree, see Figure 26.7. Shunt(i+1) will set up P [d] = b, but at the same

time, Shunt(i) will disconnect b due to compressing c. An obvious way to prevent both situation

is to apply Shunt to odd-numbered leaves �rst and to even-numbered leaves then. But

even this measure is not su�cient.

� Shunt cannot be applied to consecutive left and right odd-numbered leaves. See Figure

26.8. This situation not only disconnects the tree (Shunt(o) disconnects b due to compressing

4



i+1

i

i+1

i

a

b

c

d d

c

b

a

Figure 26.7. Shunt applied to two consecutive leaves disconnects the tree.

c, while Shunt(o + 2) sticks e to b), but it is nondeterministic again. Shunt(o + 2) performs

P [c] := nil, but Shunt(o) performs P [c] := P [b] before disconnecting b.

o

o+2e

c

b

a

o

a

b

c

e o+2

Figure 26.8. Shunt applied to two consecutive odd leaves disconnects the tree and requires Concurrent

Write.

It is easy to see that to implement this kind of contraction, we need to order leaves of tree. This is

equivalent to numbering the leaves in depth-�rst order. Hence, it is a similar problem as pre-order

numbering in the previous section, except that the internal nodes do not count. The leaf numbering

starts from 0. Let us call this procedure LR numbering.

Input: EA

0

[1; : : : ;m];

Auxiliary: IsLeaf [1; : : : ; n]; /* 
ags identifying leaves */

Output: LR Numbering[1; : : : ; n];

for all nodes v 2 T do in parallel

IsLeaf [v] := 0;

for all arcs xy 2 EA

0

do in parallel

if rank[xy] = rank[yx] + 1

then fWeight[xy] := 1; IsLeaf [y] := 1g else Weight[xy] := 0;

apply Parallel Scan on Weight[1; : : : ;m];

for all arcs xy 2 EA

0

do in parallel

if rank[xy] = rank[yx] + 1

then LR Numbering[y] :=Weight[xy]� 1 else LR Numbering[y] := 0

Even though generalizable to arbitrary tree, we describe here the generic Shunt Contract method for

binary trees.

Input: EA

0

[1; : : : ;m]; /* Euler array */

P [1; : : : ; n]; /* P [x] is a pointer to the parent of x */

side[1; : : : ; n]; /* side[v] 2 fL;Rg */

sibling[1; : : : ; n]; /* sibling[v] points to the other child of P [v] */

Auxil: IsLeaf [1; : : : ; n]; /* 
ags identifying leaves */

active[1; : : : ; n]; /* 
ags keeping track of nodes still in game */

LR numbering[1; : : : ; n]; /* Left-to-right numbering of leaves +/

Output: the value of the reduced tree stored in the root

Procedure Shunt(v : node);

f Rake(v); active[v] := 0; active[P [v]] := 0;

Compress(sibling[v]); P [sibling[v]] := P [P [v]]; g

5



/* initialize the data structures */

for all nodes v 2 T do in parallel /* initialize(v); */

call LR numbering(T );

for all nodes v 2 T do in parallel

if IsLeaf [v] then active[v] := 1 else active[v] := 0;

repeat logn times

for all nodes v 2 T do in parallel

if (v 6= root and active[v])

if (Is Odd(LR Numbering[v]) and P [v] 6= root)

then f if (side[v] = L) then Shunt(v);

if (side[v] = R) then Shunt(v) g;

else LR Numbering[v] := LR Numbering[v]=2;

Rake(root);

Theorem 2 Shunt Contract runs correctly on EREW PRAM.

Proof. Let v

1

and v

2

be two nonconsecutive left leaves of T . Then P [v

1

] 6= P [v

2

] and P [v

1

] 6= P [P [v

2

]].

It follows from the de�nition of Shunt that no collision can appear.

Theorem 3 If p = �(n= logn), then T (n; p) = O(�

Shunt

logn).

Proof. Assign logn=2 leaves to each processor. One application of Shunt Contract eliminates one

half of current leaves, so that the total number of parallel Shunt operations is at most

logn=2 + logn=4 + � � �+ logn=(2

log logn

) + 1 + � � �+ 1 � 2 logn:

In case of expression trees, the e�ect of Shunt is depicted on Figure 26.9.

op

P[v] P[v]
v

rr
v

l
r r r

r

v

v

l

v l l va x + b

v

a ((a x+b )op (a val +b )+b

a val + b

rl

a x + b
v

l r

Figure 26.9. Shunt in an expression tree.

Figure 26.10 shows an example of applying contraction based on shunting to binary expression

evaluation

4(x+3)

33

2

0

1

x

2x

3

4x+72
0

1 2

2

0

1

x

(d)

x3

(a)

x

x

x

x

xx

x

xx x

x

x

x
x 7

65

4

21

0

3

x

(c)

x

5

x+3

(e)

x

1

0

1

6

7

x

xx

x+1

(b)

x+3
2x

xx

1

4

3x+3 3x+3
3

2 +

+

1

5

2 +

4

+

4

5

4

+

1

+

5

+

+

2 3

1

5

4

+

+

+ 3

4

5

1

11

Figure 26.10. Example of contracting an expression tree by parallel Shunt operation.

6


