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Outline

• Limits of normal-distribution based testing
• Non-parametric testing
• Permutation testing
– One sample
– Two sample

• Rank-Sum test
• Signed-Rank test
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Two-sample tests

• Using a two-sample test we can compare 
properties of two observed populations 
– We observe a collection of samples drawn from 

each population
– We assume samples are independent
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Example
• Our sample data is from a group of men and women who did workouts at a 

gym three times a week for a year
• We measure the body fat percentages of the two populations

– Men: 13.3, 6.0, 20.0, 8.0, 14.0, 19.0, 18.0, 25.0, 16.0, 24.0, 15.0, 1.0, 15.0
– Women: 22.0, 16.0, 21.7, 21.0, 30.0, 26.0, 12.0, 28.0, 23.0 

• We want to compare the means of the two populations 𝜇!, 𝜇"
– Ha: 𝜇! ≠ 𝜇"
– H0: 𝜇! = 𝜇"
– 𝛼 = 0.05
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Two-sample t-tests

• We can use a two-sample t-test to compare 
the means of two observed populations 
– We observe a collection of samples drawn from 

each population
– We assume samples are independent
– We assume that the values in the two populations  

are normally distributed
– Can be used even with populations with different 

variance
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2-sample t-test

• Compute the empirical variances of each population 𝑠( and 𝑠)
• Compute the pooled  variance

• Test statistic 𝑡 = |+!,+"|

-#×
$
%!

/ $
%"

• Degrees of freedom 𝑑𝑓 = 𝑛( − 1 + 𝑛) − 1
• Compute p-value 𝑝 using a table J
• Compare p-value with set level of confidence 𝛼
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Can we always use this test?

What if I have more than two populations?
• Break down into multiple hypotheses
– Use a MHT control procedure!

• Ad-hoc control methods
– ANOVA
– Tukey-Kramer test of all pairwise differences
– Analysis of means (ANOM) 
– Dunnett’s test to compare each group mean to a 

control mean.
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Motivation

• Comparing the means of two populations is very 
important

• If the values of the populations are are normally 
distributed, we can use methods such as the t-test

• For large sample sizes, even if the populations are not 
normally distributed,  we can invoke the central limit 
theorem 

• However, in some cases the data are clearly NOT 
normally distributed, and the sample size is too small to 
invoke the CLT
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Can we always use this test?

• What if my data is small and not nearly 
normally distributed?
– If your sample sizes are very small, you might not 

even be able to test for normality
– You might need to rely on your understanding of 

the data. 
– When you cannot safely assume normality, you 

can perform a nonparametric test that doesn’t 
assume normality.
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Non-parametric testing

• Non-parametric tests are very robust:
– Can be used regardless of the distribution of the data
– They do not rely on assumptions on normal distributions or the CLT 
– This is extremely useful as in practice we can hardly check the 

correctness of these assumptions
– But of course, nothing is perfect: What you gain in robustness you lose 

in power

• The main idea is still the same we used so far:
– “Is what I am observing a result of random noise, or representative of 

a statistically significant phenomenon?”
– “Assuming the null hypothesis is true, how likely it is to observe a 

result as least as extreme as the one from the data?”
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Permutation tests

• New idea: “Let us add some randomness to the data”
– We then evaluate our test statistic on the scrambled data
– We want to decide how extreme our initial evaluation (on the 

unscrambled data) is with respect to the distributions of the 
randomized ones

– If the initial observation is still peculiar (E.g., in the 5% of the 
values obtainable adding randomness) then we interpret it as 
evidence of the fact that the observed phenomenon is not just due 
to chance
• We reject the null hypothesis J
• What is going to be the confidence of this decision?

• One-sample permutation test to compare means
• Two-samples permutation to compare distributions
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Permutations

• The word permutation refers to the arrangement of a 
(multi)set of objects into some specified order. 

• Each column is one possible permutation of the three colors:

• In general, given a set of size 𝑛 there are 𝑛! possible 
permutations of its elements
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One-sample Permutation test

• We have 𝑛 independent and identically distributed 
observations from an unknown  population 𝐷

𝑥!, 𝑥", … , 𝑥# ∼ 𝐷

• Null hypothesis is that the median 𝜃 of 𝐷 is 𝜃#
𝐻#: 𝜃 = 𝜃#

• Possible alternative hypotheses:
• 𝐻!: 𝜃 > 𝜃"
• 𝐻!: 𝜃 < 𝜃"
• 𝐻!: 𝜃 ≠ 𝜃"
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Permutation Vector and Lemma

• The permutation vector 𝑔 = (𝑔$, 𝑔%, . . . , 𝑔&) denotes
– which observations are above 𝜃6 (𝑔𝑖 = 1),
– and which are below 𝜃6 (𝑔𝑖 = −1)

• There are 27 different possible 𝑔 vectors (each 𝑔8 can be 1 or −1)
• If 𝐻6: 𝜃 = 𝜃6 is true, then 𝑃 𝑥8 < 𝜃6 = 𝑃(𝑥8 > 𝜃6) = 0.5 by 

definition of median

Permutation Lemma:
Under 𝐻6: 𝜃 = 𝜃6, the vector 𝑔 has probability 9:% of equaling each 
of the 27 different possible outcomes
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Permutation Achieved Significance Level

• Test statistic  computed using the data
𝑇 =

1
𝑛<%&'

(
(𝑥% − 𝜃))

• For each of the possible permutation vectors we compute an 
analogous value

𝑡* =
1
𝑛<%&'

(
𝑥% − 𝜃) 𝑔*

• The larger the observed absolute values of the difference, the more 
evidence against H0

• The Permutation Achieved Significance (ASL) level is the probability 
that for a randomly chosen permutation vector 𝑡$ > 𝑇

𝐴𝐿𝑆%&'( = |{𝑡$ 𝑠. 𝑡. 𝑡$ > 𝑇 }|/2)
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Main idea

• Recall, we want to evaluate how surprising/extreme the 
observed value 𝑇 is with respect to the 𝑡!’s
– In particular, how extreme with respect to the distribution of

the 𝑡$’s

• If the H0 is correct, the value 𝑇 should not “stand out” 
with respect to the other 𝑡!’s
– Should be distributed as the 𝑡$’s

• E.g., if 𝑇 lays in the bottom 5% of the values obtained by 
randomly permuting, the probability of that happening 
under the null hypothesis would be no more than 0.05
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Test procedure

• One-sided upper alternative 𝐻9: 𝜃 > 𝜃6
𝑝CDE = | 𝑡F 𝑡F ≥ 𝑇 |/27

• One-sided lower alternative 𝐻9: 𝜃 < 𝜃6
𝑝CDE = | 𝑡F 𝑡F ≤ 𝑇 |/27

• Two-sided alternative 𝐻9: 𝜃 ≠ 𝜃6
𝑝CDE = | 𝑡F 𝑡F ≥ |𝑇| |/27

• We can compare 𝑝CDE with the control threshold level 𝛼
– If 𝑝CDE ≤ 𝛼 reject null hypothesis
– Otherwise, fail to reject.
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Problem

• When 2& is large, computing the 𝑡' for all possible 𝑔
vectors is computationally expensive (hard)
– Exponential runtime

• Solution: use a randomized Monte Carlo approach!
– We need an estimate/approximate of the p-value to be 

used in the testing
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Monte Carlo approximation

• Select 𝐵 permutation vectors 𝒈! uniformly at 
random 

• For each vector evaluate the statistic 𝑡!
• Compute the approximate p-values 

𝑝"#$ = | 𝑡% ∈ {𝑡&, … , 𝑡'} 𝑡% ≥ |𝑇| |/𝐵
• How much should we sample?
– Not a clear answer
– For large 𝑛 generally 1000, 2000 samples are used 
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Symmetric distribution 

• A probability distribution is said to be symmetric if and only if 
there exist a value 𝑥6 such that 

𝑓 𝑥6 − 𝛿 = 𝑓 𝑥6 + 𝛿 for all 𝛿 ∈ 𝑅
where f is the probability density function if the distribution 
is continuous or the probability mass function if the 
distribution is discrete.

• The median and the mean (if they exists) of a symmetric 
distribution are the same 

• If we assume the population mean being symmetric, we can 
use the one-sample permutation test to formulate 
hypotheses on the population mean 
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Non-parametric methods to compare distributions

• We previously saw how to use the Chi-Squared test
to compare distributions

• This holds based on the assumption that the the 
difference between observed populations converges 
to the Chi-Squared distribution

• Permutation tests are an alternative, non-parametric, 
approach to test distributions 
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Two-sample permutation test

• We have 𝑁 = 𝑚 + 𝑛 observations 
– 𝑥1, . . . , 𝑥𝑚 are iid random sample from population 1 
– 𝑦1, . . . , 𝑦𝑛 are iid random sample from population 2

• We want to make inferences about the difference of 
the populations’ distribution
– Let 𝐹9 and 𝐹: denote distributions of pop. 1 and 2 
– Null hypothesis: 𝐹9 and 𝐹: are the same distribution 
• 𝐻6 ∶ 𝐹9 𝑧 = 𝐹: 𝑧 , ∀ 𝑧

– Alternative hypothesis is different distributions 
• 𝐻9 ∶ ∃ 𝑧 𝑠. 𝑡. 𝐹9 𝑧 ≠ 𝐹: 𝑧
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Permutation Vector and Lemma (2-Sample)

• Let 𝒈 = (𝑔9, 𝑔:, . . . , 𝑔G) be the permutation vector denoting 
which observation belongs to which population 
– I.e., 𝑔# = 1 𝑖𝑓 𝑥# ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1 and 𝑔# = −1 otherwise
– 𝒈 contains 𝑚 X-group labels and 𝑛 Y-group labels 
– 𝑔# denotes group membership of 𝑥# , where 𝑥# is i-th observation for 

combined sample of 𝑁 observations

– There are $
% different possible values of the permutation vector

• Permutation Lemma:
Assuming the null-hypothesis 𝐻6 ∶ 𝐹9 𝑧 = 𝐹: 𝑧 , ∀ 𝑧 is true, 
the vector 𝒈 is uniformly distributed on the G7 = G!

7!I!
possible values
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Test statistic

• We compute the difference in the means
𝑇 =

1
𝑛<%&'

(
𝑥% −

1
𝑚<

%&'

+
𝑦%

• For each of the :
& possible permutation vectors we 

evaluate a similar quantity
𝑡* =

1
𝑛<% ,%-. /012/ 3

𝑧% −
1
𝑚<

% ,%-. /012/ 4
𝑧%

• To test H0 we evaluate how surprising the value 𝑇 is 
with respect to the value obtained through the 
random permutations (their distribution)
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Test procedure

• Fix critical control/confidence level 𝛼
• We sort the computed differences 𝑡' increasingly
– If 𝑇 falls in the middle (1 − 𝛼) fraction of the values, then 

we fail to reject the null hypothesis
– Otherwise, if 𝑇 is on the tails of the observed values, we 

reject H0 at significance level 𝛼
– The difference we observed in the populations is extreme 

enough to give us reason to reject the null hypothesis of 
the two distributions being the same
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Problem

• When 𝑛,𝑚 are large, computing all of the 𝑡%
for all (

) possible random permutation 
vectors is computationally expensive. 

• Solution: use a randomized Monte Carlo 
approach!
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Monte Carlo approximation

• Randomly sample 𝐵 permutation vectors 𝒈;
• For each vector evaluate the statistic 𝑡;
• We sort the computed differences
– If T falls in the middle (1 − 𝛼) fraction of the 𝐵 values, 

then we fail to reject the null hypothesis
– Otherwise, if T is on the tails of the observed values, we 

reject H0 at 𝛼 significance level
• The difference we observed in the populations is extreme enough 

to give us reason not reject the hypothesis of the two distributions 
being the same

• How much should we sample?
– Not a clear answer
– For large n generally 1000, 2000 samples are used 
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The Rank-Sum Test (Mann-Whitney U test)

• Consider the samples
– 𝑋9 = {9.0,11.5,11.5,12.0,13.0,13.25}
– 𝑋: = {9.0,9.5,9.5,9.75,10.0,13.0}

• H0: The mean of the two distributions is the same
• We start by ranking the observations according to their size 

relative to the whole sample
– If there are ties, we average the ranks
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The Rank-Sum Test (Mann-Whitney U test)

• We compute: 
– R1 by summing the ranks of the entries of the smaller sample
– R2 by summing the ranks of the entries of the larger sample

• H0: The mean of the two distributions is the same
• If the null hypothesis is true, we would expect R1 and R2 to have 

similar value
• The U test statistic is computed as 

𝑈 = min{𝑅9 −
𝑛9 𝑛9 + 1

2
, 𝑅: −

𝑛: 𝑛: + 1
2

}
– If there is a complete separation between the populations U=0
– If the values are well interleaved, we would observe a higher values of U
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The Rank-Sum Test (Mann-Whitney U test)
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• Critical values are given for two-tailed test
• Rows and columns correspond to the sizes of the smaller and 

larger samples, respectively
• For every combination of row and column, there are two 

subrows: 
– the top gives the critical values for confidence 10% (i.e., 𝛼 = 0.1)
– bottom the 5% ones. 

• For a one-sided test at 5% use the relevant top entry.



The Rank-Sum Test (Mann-Whitney U test)

• For a given choice of 𝑛&, 𝑛*, 𝛼 we get a value 
u(𝑛&, 𝑛*, 𝛼 ) 

• If our computed test statistic 𝑈 ≤ u(𝑛&, 𝑛*, 𝛼 ), 
we reject the null

• Otherwise we fail to reject the null
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Larger Samples 

• The table only goes up to large sample size 20
• For larger samples use normal approximation

• Then compare with the normal table 
• E.g., for two-tailed test at 0.05 reject null if |𝑧| > 1.96.
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U −m&
𝜎'

m5 =
n'n$
2

𝜎' =
n(n)(n( + n) + 1)
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Wilcoxon Signed-Rank Test for Paired Data

• Used to study the distribution of the difference of paired 
observations
– Let 𝑁 be the sample size, thus 2𝑁 data points in pairs 
– (𝑥#,(, 𝑥#,)) denote the measurements

• Assumptions:
– Data are paired (𝑥#,(, 𝑥#,)) and come from the same population
– Each pair is chosen uniformly and independently at random
– The data are measured on at least an interval scale when, as is usual, 

within-pair differences are calculated to perform the test
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Testing procedure

• H0: difference between the pairs follows a symmetric 
distribution around zero

• H1: difference between the pairs does not follow a symmetric 
distribution around zero.

1. Calculate 𝑑# = |𝑥),# − 𝑥(,#| and 𝑠𝑔𝑛 = 𝑥),# − 𝑥(,#
2. Exclude pairs for which 𝑑# = 0, and let Nr be the adjusted sample size
3. Rank the pairs according to increasing values for the 𝑑#’s

• Smallest 𝑑# has rank 1
• Let 𝑅# be the rank associated with 𝑑#
• Ties are split by averaging the ranks
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Testing procedure

4. Calculate the test statistic
𝑊 = ∑-.!

/6 𝑠𝑔𝑛 𝑥0,- − 𝑥!,- 𝑅-

Under the null hypothesis W follows the “W-distribution” with mean 0 
and variance 

𝑁'(𝑁' + 1)(2𝑁' + 1)
6

5. Given a critical value 𝛼, we can obtain a   corresponding value 
𝑊2,/6 using the opportune   table

6. If |𝑊| > 𝑊2,/6 reject H0
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Example 

• We consider a comparative study between different 
methods of preparing breasts for breastfeeding. 

• Each mother treated one breast, leaving the other 
untreated. 

• The following data gives the difference in the level of 
discomfort (1 to 4) between treated and untreated breast 
for a particular treatment. 

• There are 19 measurements overall.
-0.525, 0.172, -0.577, 0.200, 0.040, -0.143, 0.043, 0.010, 0.000, -0.522, 0.007, 

-0.122, -0.040, 0.000, -0.100, 0.050, -0.575, 0.031, -0.060.
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Example

• We rank the observations by absolute value 
after dropping the zero values

• We thus have 𝑊 = 48.5
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Example

• Since we dropped two 
values our sample size 
is 19-2=17

• Looking at the 
corresponding row we 
find the critical value 
of 34 at the 5% level

• To reject we would 
have to observe T ≤ 34. 

• We fail to reject the 
null
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Sample sizes 

• For 𝑁E < 20 it is necessary to use the exact 
distribution (i.e. the table)

• As 𝑁E increases the sampling distribution of W 
converges to a normal distribution

– z-score z= "
#3
, where 𝜎" = $4($4&')()$4&')

*

– Given a critical confidence threshold 𝛼, we obtain the 
corresponding critical value 𝑧+ using opportune table

– Reject 𝐻, if 𝑧 > 𝑧+
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How Would the t-test Do?

• Paired t-test:
– For every pair (𝑥9,8, 𝑥:,8) compute the difference 𝑑8 =
(𝑥:,8 − 𝑥9,8)

– Just run the “standard” t-test on the  𝑑8 values!
• We would have �̅� = −0.11, 𝑠L = 0.25

𝑡 = 𝑛
�̅�
𝑠L
= −1.95

• Given 𝛼 = 0.05 , we can obtain the corresponding 
threshold using the table 
– For two-tailed test the threshold would be 2.10
– Since 2.10>-1.95 we would fail to reject 𝐻6
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Is the t-test Justified?

• Does the data look like it comes from a normal 
distribution? Let’s look at the histogram.
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