

CS1951A: Data Science

Lecture 13: Non-parametric testing

Lorenzo De Stefani Spring 2022

Outline

- Limits of normal-distribution based testing
- Non-parametric testing
- Permutation testing
 - One sample
 - Two sample
- Rank-Sum test
- Signed-Rank test

Two-sample tests

- Using a two-sample test we can compare properties of two observed populations
 - We observe a collection of samples drawn from each population
 - We assume samples are independent

- Our sample data is from a group of men and women who did workouts at a gym three times a week for a year
- We measure the body fat percentages of the two populations
 - Men: 13.3, 6.0, 20.0, 8.0, 14.0, 19.0, 18.0, 25.0, 16.0, 24.0, 15.0, 1.0, 15.0
 - Women: 22.0, 16.0, 21.7, 21.0, 30.0, 26.0, 12.0, 28.0, 23.0

• We want to compare the means of the two populations μ_M , μ_W

$$H_a: \mu_M \neq \mu_W$$

$$- H_0: \mu_M = \mu_W$$

 $- \alpha = 0.05$

Two-sample t-tests

- We can use a two-sample t-test to compare the means of two observed populations
 - We observe a collection of samples drawn from each population
 - We assume samples are independent
 - We assume that the values in the two populations are normally distributed
 - Can be used even with populations with different variance

2-sample t-test

- Compute the empirical variances of each population s_M and s_W
- Compute the pooled variance

$$s_p^2 = \frac{\left((n_M - 1)s_M^2\right) + \left((n_W - 1)s_W^2\right)}{n_M + n_W - 2}$$

• Test statistic
$$t = \frac{|\mu_M - \mu_W|}{s_p \times \sqrt{\frac{1}{n_M} + \frac{1}{n_W}}}$$

- Degrees of freedom $df = n_M 1 + n_W 1$
- Compute p-value p using a table ☺
- Compare p-value with set level of confidence α

Can we always use this test?

What if I have more than two populations?

- Break down into multiple hypotheses
 - Use a MHT control procedure!
- Ad-hoc control methods
 - ANOVA
 - Tukey-Kramer test of all pairwise differences
 - Analysis of means (ANOM)
 - Dunnett's test to compare each group mean to a control mean.

Motivation

- Comparing the means of two populations is very important
- If the values of the populations are are normally distributed, we can use methods such as the t-test
- For large sample sizes, even if the populations are not normally distributed, we can invoke the central limit theorem
- However, in some cases the data are clearly NOT normally distributed, and the sample size is too small to invoke the CLT

Can we always use this test?

- What if my data is small and not nearly normally distributed?
 - If your sample sizes are very small, you might not even be able to test for normality
 - You might need to rely on your understanding of the data.
 - When you cannot safely assume normality, you can perform a nonparametric test that doesn't assume normality.

Non-parametric testing

- Non-parametric tests are very robust:
 - Can be used regardless of the distribution of the data
 - They do not rely on assumptions on normal distributions or the CLT
 - This is extremely useful as in practice we can hardly check the correctness of these assumptions
 - But of course, nothing is perfect: What you gain in robustness you lose in power
- The main idea is still the same we used so far:
 - "Is what I am observing a result of random noise, or representative of a statistically significant phenomenon?"
 - "Assuming the null hypothesis is true, how likely it is to observe a result as least as extreme as the one from the data?"

Permutation tests

- New idea: "Let us add some randomness to the data"
 - We then evaluate our test statistic on the scrambled data
 - We want to decide how extreme our initial evaluation (on the unscrambled data) is with respect to the distributions of the randomized ones
 - If the initial observation is still peculiar (E.g., in the 5% of the values obtainable adding randomness) then we interpret it as evidence of the fact that the observed phenomenon is not just due to chance
 - We reject the null hypothesis 🙂
 - What is going to be the confidence of this decision?
- One-sample permutation test to compare means
- Two-samples permutation to compare distributions

Permutations

- The word permutation refers to the arrangement of a (multi)set of objects into some specified order.
- Each column is one possible permutation of the three colors:

 In general, given a set of size n there are n! possible permutations of its elements

One-sample Permutation test

- We have *n* independent and identically distributed observations from an unknown population *D x*₁, *x*₂, ..., *x_n* ~ *D*
- Null hypothesis is that the median θ of D is θ_0 $H_0: \theta = \theta_0$
- Possible alternative hypotheses:
 - $H_1: \theta > \theta_0$
 - $H_1: \theta < \theta_0$
 - $H_1: \theta \neq \theta_0$

Permutation Vector and Lemma

- The permutation vector $g = (g_1, g_2, ..., g_n)$ denotes
 - which observations are above θ_0 ($g_i = 1$),

- and which are below θ_0 ($g_i = -1$)

- There are 2^n different possible g vectors (each g_i can be 1 or -1)
- If $H_0: \theta = \theta_0$ is true, then $P(x_i < \theta_0) = P(x_i > \theta_0) = 0.5$ by definition of median

Permutation Lemma:

Under $H_0: \theta = \theta_0$, the vector g has probability $\frac{1}{2^n}$ of equaling each of the 2^n different possible outcomes

Permutation Achieved Significance Level

• Test statistic computed using the data

$$T = \frac{1}{n} \sum_{i=1}^{n} (x_i - \theta_0)$$

• For each of the possible permutation vectors we compute an analogous value

$$t_j = \frac{1}{n} \sum_{i=1}^n |x_i - \theta_0| g_j$$

- The larger the observed absolute values of the difference, the more evidence against $\rm H_{0}$
- The Permutation Achieved Significance (ASL) level is the probability that for a randomly chosen permutation vector $|t_j| > T$

$$ALS_{perm} = |\{t_j \ s. t. |t_j| > |T|\}|/2^n$$

Main idea

- Recall, we want to evaluate how surprising/extreme the observed value T is with respect to the t_i's
 - In particular, how extreme with respect to the distribution of the t_j's
- If the H₀ is correct, the value T should not "stand out" with respect to the other t_j's
 - Should be distributed as the t_j 's
- E.g., if *T* lays in the bottom 5% of the values obtained by randomly permuting, the probability of that happening under the null hypothesis would be no more than 0.05

Test procedure

• One-sided upper alternative $H_1: \theta > \theta_0$

$$p_{val} = |\{t_j | t_j \ge T\}|/2^n$$

• One-sided lower alternative $H_1: \theta < \theta_0$

$$p_{val} = |\{t_j | t_j \le T\}|/2^n$$

- Two-sided alternative $H_1: \theta \neq \theta_0$ $p_{val} = |\{t_j | | t_j | \ge |T|\}|/2^n$
- We can compare p_{val} with the control threshold level α
 - If $p_{val} \leq \alpha$ reject null hypothesis
 - Otherwise, fail to reject.

Problem

- When 2ⁿ is large, computing the t_j for all possible g vectors is computationally expensive (hard)
 - Exponential runtime
- Solution: use a randomized Monte Carlo approach!
 - We need an estimate/approximate of the p-value to be used in the testing

Monte Carlo approximation

- Select B permutation vectors g_i uniformly at random
- For each vector evaluate the statistic t_i
- Compute the approximate p-values

$$p_{val} = |\{t_j \in \{t_1, \dots, t_B\}| |t_j| \ge |T|\}|/B$$

• How much should we sample?

Not a clear answer

– For large *n* generally 1000, 2000 samples are used

Symmetric distribution

 A probability distribution is said to be symmetric if and only if there exist a value x₀ such that

 $f(x_0 - \delta) = f(x_0 + \delta)$ for all $\delta \in R$

where *f* is the probability density function if the distribution is continuous or the probability mass function if the distribution is discrete.

- The median and the mean (if they exists) of a symmetric distribution are the same
- If we assume the population mean being symmetric, we can use the one-sample permutation test to formulate hypotheses on the population mean

Non-parametric methods to compare distributions

- We previously saw how to use the Chi-Squared test to compare distributions
- This holds based on the assumption that the the difference between observed populations converges to the Chi-Squared distribution
- Permutation tests are an alternative, non-parametric, approach to test distributions

Two-sample permutation test

- We have N = m + n observations
 - $-x_1, \ldots, x_m$ are iid random sample from population 1
 - $-y_1, \ldots, y_n$ are iid random sample from population 2
- We want to make inferences about the difference of the populations' distribution
 - Let F_1 and F_2 denote distributions of pop. 1 and 2
 - Null hypothesis: F_1 and F_2 are the same distribution

•
$$H_0: F_1(z) = F_2(z), \forall z$$

- Alternative hypothesis is different distributions
 - H_1 : $\exists z s.t. F_1(z) \neq F_2(z)$

Permutation Vector and Lemma (2-Sample)

- Let $g = (g_1, g_2, ..., g_N)$ be the permutation vector denoting which observation belongs to which population
 - I.e., $g_i = 1$ if $x_i \in population 1$ and $g_i = -1$ otherwise
 - g contains m X-group labels and n Y-group labels
 - g_i denotes group membership of x_i , where x_i is i-th observation for combined sample of N observations
 - There are $\binom{N}{n}$ different possible values of the permutation vector
- Permutation Lemma:

Assuming the null-hypothesis $H_0: F_1(z) = F_2(z), \forall z \text{ is true},$ the vector \boldsymbol{g} is uniformly distributed on the $\binom{N}{n} = \frac{N!}{n!m!}$ possible values

Test statistic

• We compute the difference in the means

$$T = \frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{m} \sum_{i=1}^{m} y_i$$

- For each of the $\binom{N}{n}$ possible permutation vectors we evaluate a similar quantity $t_j = \frac{1}{n} \sum_{i \text{ with label } X} z_i - \frac{1}{m} \sum_{i \text{ with label } Y} z_i$
- To test H_0 we evaluate how surprising the value T is with respect to the value obtained through the random permutations (their distribution)

Test procedure

- Fix critical control/confidence level α
- We sort the computed differences t_i increasingly
 - If T falls in the middle (1α) fraction of the values, then we fail to reject the null hypothesis
 - Otherwise, if T is on the tails of the observed values, we reject H_0 at significance level α
 - The difference we observed in the populations is extreme enough to give us reason to reject the null hypothesis of the two distributions being the same

Problem

- When n, m are large, computing all of the t_j for all $\binom{N}{n}$ possible random permutation vectors is computationally expensive.
- Solution: use a randomized Monte Carlo approach!

Monte Carlo approximation

- Randomly sample B permutation vectors \boldsymbol{g}_i
- For each vector evaluate the statistic t_i
- We sort the computed differences
 - If T falls in the middle (1α) fraction of the *B* values, then we fail to reject the null hypothesis
 - Otherwise, if T is on the tails of the observed values, we reject H_0 at α significance level
 - The difference we observed in the populations is extreme enough to give us reason not reject the hypothesis of the two distributions being the same
- How much should we sample?
 - Not a clear answer
 - For large n generally 1000, 2000 samples are used

• Consider the samples

 $- X_1 = \{9.0, 11.5, 11.5, 12.0, 13.0, 13.25\}$

 $- X_2 = \{9.0, 9.5, 9.5, 9.75, 10.0, 13.0\}$

- H₀: The mean of the two distributions is the same
- We start by ranking the observations according to their size relative to the whole sample
 - If there are ties, we average the ranks

measurements	9.0	9.0	9.5	9.5	9.75	10.0	11.5	11.5	12.0	13.0	13.0	13.25
ranks	1	2	3	4	5	6	7	8	9	10	11	12
modified ranks	1.5	1.5	3.5	3.5	5	6	7.5	7.5	9	10.5	10.5	12

- We compute:
 - $-R_1$ by summing the ranks of the entries of the smaller sample
 - $-R_2$ by summing the ranks of the entries of the larger sample
- H₀: The mean of the two distributions is the same
- If the null hypothesis is true, we would expect R1 and R2 to have similar value
- The U test statistic is computed as

$$U = \min\{R_1 - \frac{n_1(n_1 + 1)}{2}, R_2 - \frac{n_2(n_2 + 1)}{2}\}$$

- If there is a complete separation between the populations U=0
- If the values are well interleaved, we would observe a higher values of U

Critical Values of the Mann-Whitney U (Two-Tailed Testing)

- Critical values are given for two-tailed test
- Rows and columns correspond to the sizes of the smaller and larger samples, respectively
- For every combination of row and column, there are two subrows:
 - the top gives the critical values for confidence 10% (i.e., $\alpha = 0.1$)
 - bottom the 5% ones.
- For a one-sided test at 5% use the relevant top entry.

- For a given choice of n_1, n_2, α we get a value $u(n_1, n_2, \alpha)$
- If our computed test statistic $U \leq u(n_1, n_2, \alpha)$, we reject the null
- Otherwise we fail to reject the null

Larger Samples

- The table only goes up to large sample size 20
- For larger samples use normal approximation

$$z = \frac{U - m_u}{\sigma_U}$$
$$m_u = \frac{n_1 n_2}{2}$$
$$\sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

- Then compare with the normal table
- E.g., for two-tailed test at 0.05 reject null if |z| > 1.96.

Wilcoxon Signed-Rank Test for Paired Data

- Used to study the distribution of the difference of paired observations
 - Let N be the sample size, thus 2N data points in pairs
 - $(x_{i,1}, x_{i,2})$ denote the measurements
- Assumptions:
 - Data are paired $(x_{i,1}, x_{i,2})$ and come from the same population
 - Each pair is chosen uniformly and independently at random
 - The data are measured on at least an <u>interval scale</u> when, as is usual, within-pair *differences* are calculated to perform the test

Testing procedure

- H₀: difference between the pairs follows a <u>symmetric</u> <u>distribution</u> around zero
- H₁: difference between the pairs does not follow a symmetric distribution around zero.
 - 1. Calculate $d_i = |x_{2,i} x_{1,i}|$ and $sgn = (x_{2,i} x_{1,i})$
 - 2. Exclude pairs for which $d_i = 0$, and let N_r be the adjusted sample size
 - 3. Rank the pairs according to increasing values for the d_i 's
 - Smallest d_i has rank 1
 - Let R_i be the rank associated with d_i
 - Ties are split by averaging the ranks

Testing procedure

4. Calculate the test statistic

$$W = \sum_{i=1}^{N_r} sgn(x_{2,i} - x_{1,i})R_i$$

Under the null hypothesis W follows the "W-distribution" with mean 0 and variance

$$\frac{N_r(N_r+1)(2N_r+1)}{6}$$

5. Given a critical value α , we can obtain a corresponding value W_{α,N_r} using the opportune table

6. If $|W| > W_{\alpha,N_r}$ reject H_0

- We consider a comparative study between different methods of preparing breasts for breastfeeding.
- Each mother treated one breast, leaving the other untreated.
- The following data gives the difference in the level of discomfort (1 to 4) between treated and untreated breast for a particular treatment.
- There are 19 measurements overall.

-0.525, 0.172, -0.577, 0.200, 0.040, -0.143, 0.043, 0.010, 0.000, -0.522, 0.007, -0.122, -0.040, 0.000, -0.100, 0.050, -0.575, 0.031, -0.060.

• We rank the observations by absolute value after dropping the zero values

Diff	0.007	0.010	0.031	0.040	-0.040	0.043	0.050	-0.060	-0.100
Rank	1	2	3	4.5	4.5	6	7	8	9
Diff	-0.122	-0.143	0.172	0.200	-0.522	-0.525	-0.575	-0.577	
Rank	10	11	12	13	14	15	16	17	

• We thus have W = 48.5

1		
n	$\mathbf{P}=0.10$	$\mathbf{P}=0.05$
5	2	-
6	2	0
7	3	2
8	5	3
9	8	5
10	10	8
11	14	10
12	17	13
13	21	17
14	26	21
15	30	25
16	36	29
17	41	34
18	47	40
19	53	46
20	60	52
21	67	58
22	75	65
23	83	73
24	91	81
25	100	89

- Since we dropped two values our sample size is 19-2=17
- Looking at the corresponding row we find the critical value of 34 at the 5% level
- To reject we would have to observe T ≤ 34.
- We fail to reject the null

Sample sizes

- For $N_r < 20$ it is necessary to use the exact distribution (i.e. the table)
- As N_r increases the sampling distribution of W converges to a normal distribution

- z-score z=
$$\frac{W}{\sigma_W}$$
, where $\sigma_W = \sqrt{\frac{N_r(N_r+1)(2N_r+1)}{6}}$

– Given a critical confidence threshold α , we obtain the corresponding critical value z_{α} using opportune table

- Reject
$$H_0$$
 if $|z| > z_\alpha$

How Would the t-test Do?

- Paired t-test:
 - For every pair $(x_{1,i}, x_{2,i})$ compute the difference $d_i = (x_{2,i} x_{1,i})$
 - Just run the "standard" t-test on the d_i values!
- We would have $\overline{d} = -0.11$, $s_d = 0.25$ $t = \sqrt{n} \frac{\overline{d}}{s_d} = -1.95$
- Given $\alpha = 0.05$, we can obtain the corresponding threshold using the table
 - For two-tailed test the threshold would be 2.10
 - Since 2.10>-1.95 we would fail to reject H_0

Is the t-test Justified?

 Does the data look like it comes from a normal distribution? Let's look at the histogram.

CSCI 1951A - Data Science - Spring'22 - Lorenzo De Stefani