CS1951A: Data Science

Lecture 13: Non-parametric testing

Lorenzo De Stefani

Spring 2022

Outline

- Limits of normal-distribution based testing
- Non-parametric testing
- Permutation testing
- One sample
- Two sample
- Rank-Sum test
- Signed-Rank test

Two-sample tests

- Using a two-sample test we can compare properties of two observed populations
- We observe a collection of samples drawn from each population
- We assume samples are independent

Example

- Our sample data is from a group of men and women who did workouts at a gym three times a week for a year
- We measure the body fat percentages of the two populations
- Men: 13.3, 6.0, 20.0, 8.0, 14.0, 19.0, 18.0, 25.0, 16.0, 24.0, 15.0, 1.0, 15.0
- Women: 22.0, 16.0, 21.7, 21.0, 30.0, 26.0, 12.0, 28.0, 23.0

- We want to compare the means of the two populations μ_{M}, μ_{W}
- $\mathrm{H}_{\mathrm{a}}: \mu_{M} \neq \mu_{W}$
$-\mathrm{H}_{0}: \mu_{M}=\mu_{W}$
- $\alpha=0.05$

Two-sample t-tests

- We can use a two-sample t-test to compare the means of two observed populations
- We observe a collection of samples drawn from each population
- We assume samples are independent
- We assume that the values in the two populations are normally distributed
- Can be used even with populations with different variance

2-sample t-test

- Compute the empirical variances of each population s_{M} and s_{W}
- Compute the pooled variance

$$
s_{p}^{2}=\frac{\left(\left(n_{M}-1\right) s_{M}^{2}\right)+\left(\left(n_{W}-1\right) s_{W}^{2}\right)}{n_{M}+n_{W}-2}
$$

- Test statistic $t=\frac{\left|\mu_{M}-\mu_{W}\right|}{s_{p} \times \sqrt{\frac{1}{n_{M}}+\frac{1}{n_{W}}}}$
- Degrees of freedom $d f=n_{M}-1+n_{W}-1$
- Compute p-value p using a table :)
- Compare p -value with set level of confidence α

Can we always use this test?

What if I have more than two populations?

- Break down into multiple hypotheses
- Use a MHT control procedure!
- Ad-hoc control methods
- ANOVA
- Tukey-Kramer test of all pairwise differences
- Analysis of means (ANOM)
- Dunnett's test to compare each group mean to a control mean.

Motivation

- Comparing the means of two populations is very important
- If the values of the populations are are normally distributed, we can use methods such as the t-test
- For large sample sizes, even if the populations are not normally distributed, we can invoke the central limit theorem
- However, in some cases the data are clearly NOT normally distributed, and the sample size is too small to invoke the CLT

Can we always use this test?

- What if my data is small and not nearly normally distributed?
- If your sample sizes are very small, you might not even be able to test for normality
- You might need to rely on your understanding of the data.
- When you cannot safely assume normality, you can perform a nonparametric test that doesn't assume normality.

Non-parametric testing

- Non-parametric tests are very robust:
- Can be used regardless of the distribution of the data
- They do not rely on assumptions on normal distributions or the CLT
- This is extremely useful as in practice we can hardly check the correctness of these assumptions
- But of course, nothing is perfect: What you gain in robustness you lose in power
- The main idea is still the same we used so far:
- "Is what I am observing a result of random noise, or representative of a statistically significant phenomenon?"
- "Assuming the null hypothesis is true, how likely it is to observe a result as least as extreme as the one from the data?"

Permutation tests

- New idea: "Let us add some randomness to the data"
- We then evaluate our test statistic on the scrambled data
- We want to decide how extreme our initial evaluation (on the unscrambled data) is with respect to the distributions of the randomized ones
- If the initial observation is still peculiar (E.g., in the 5\% of the values obtainable adding randomness) then we interpret it as evidence of the fact that the observed phenomenon is not just due to chance
- We reject the null hypothesis -
- What is going to be the confidence of this decision?
- One-sample permutation test to compare means
- Two-samples permutation to compare distributions

Permutations

- The word permutation refers to the arrangement of a (multi)set of objects into some specified order.
- Each column is one possible permutation of the three colors:

- In general, given a set of size n there are n ! possible permutations of its elements

One-sample Permutation test

- We have n independent and identically distributed observations from an unknown population D

$$
x_{1}, x_{2}, \ldots, x_{n} \sim D
$$

- Null hypothesis is that the median θ of D is θ_{0}

$$
H_{0}: \theta=\theta_{0}
$$

- Possible alternative hypotheses:
- $H_{1}: \theta>\theta_{0}$
- $H_{1}: \theta<\theta_{0}$
- $H_{1}: \theta \neq \theta_{0}$

Permutation Vector and Lemma

- The permutation vector $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ denotes - which observations are above $\theta_{0}\left(g_{i}=1\right)$, - and which are below $\theta_{0}\left(g_{i}=-1\right)$
- There are 2^{n} different possible g vectors (each g_{i} can be 1 or -1)
- If $H_{0}: \theta=\theta_{0}$ is true, then $P\left(x_{i}<\theta_{0}\right)=P\left(x_{i}>\theta_{0}\right)=0.5$ by definition of median

Permutation Lemma:

Under $H_{0}: \theta=\theta_{0}$, the vector g has probability $\frac{1}{2^{n}}$ of equaling each of the 2^{n} different possible outcomes

Permutation Achieved Significance Level

- Test statistic computed using the data

$$
T=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\theta_{0}\right)
$$

- For each of the possible permutation vectors we compute an analogous value

$$
t_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\theta_{0}\right| g_{j}
$$

- The larger the observed absolute values of the difference, the more evidence against H_{0}
- The Permutation Achieved Significance (ASL) level is the probability that for a randomly chosen permutation vector $\left|t_{j}\right|>T$

$$
A L S_{\text {perm }}=\mid\left\{t_{j} \text { s.t. }\left|t_{j}\right|>|T|\right\} \mid / 2^{n}
$$

Main idea

- Recall, we want to evaluate how surprising/extreme the observed value T is with respect to the t_{j} 's
- In particular, how extreme with respect to the distribution of the t_{j} 's
- If the H_{0} is correct, the value T should not "stand out" with respect to the other t_{j} 's
- Should be distributed as the t_{j} 's
- E.g., if T lays in the bottom 5% of the values obtained by randomly permuting, the probability of that happening under the null hypothesis would be no more than 0.05

Test procedure

- One-sided upper alternative $H_{1}: \theta>\theta_{0}$

$$
p_{v a l}=\left|\left\{t_{j} \mid t_{j} \geq T\right\}\right| / 2^{n}
$$

- One-sided lower alternative $H_{1}: \theta<\theta_{0}$

$$
p_{v a l}=\left|\left\{t_{j} \mid t_{j} \leq T\right\}\right| / 2^{n}
$$

- Two-sided alternative $H_{1}: \theta \neq \theta_{0}$

$$
p_{v a l}=\left|\left\{t_{j}| | t_{j}|\geq|T|\} \mid / 2^{n}\right.\right.
$$

- We can compare $p_{v a l}$ with the control threshold level α
- If $p_{v a l} \leq \alpha$ reject null hypothesis
- Otherwise, fail to reject.

Problem

- When 2^{n} is large, computing the t_{j} for all possible g vectors is computationally expensive (hard)
- Exponential runtime
- Solution: use a randomized Monte Carlo approach!
- We need an estimate/approximate of the p-value to be used in the testing

Monte Carlo approximation

- Select B permutation vectors \boldsymbol{g}_{i} uniformly at random
- For each vector evaluate the statistic t_{i}
- Compute the approximate p-values

$$
p_{v a l}=\left|\left\{t_{j} \in\left\{t_{1}, \ldots, t_{B}\right\}| | t_{j}|\geq|T|\} \mid / B\right.\right.
$$

- How much should we sample?
- Not a clear answer
- For large n generally 1000, 2000 samples are used

Symmetric distribution

- A probability distribution is said to be symmetric if and only if there exist a value x_{0} such that

$$
f\left(x_{0}-\delta\right)=f\left(x_{0}+\delta\right) \text { for all } \delta \in R
$$

where f is the probability density function if the distribution is continuous or the probability mass function if the distribution is discrete.

- The median and the mean (if they exists) of a symmetric distribution are the same
- If we assume the population mean being symmetric, we can use the one-sample permutation test to formulate hypotheses on the population mean

Non-parametric methods to compare distributions

- We previously saw how to use the Chi-Squared test to compare distributions
- This holds based on the assumption that the the difference between observed populations converges to the Chi-Squared distribution
- Permutation tests are an alternative, non-parametric, approach to test distributions

Two-sample permutation test

- We have $N=m+n$ observations
$-x_{1}, \ldots, x_{m}$ are iid random sample from population 1
$-y_{1}, \ldots, y_{n}$ are iid random sample from population 2
- We want to make inferences about the difference of the populations' distribution
- Let F_{1} and F_{2} denote distributions of pop. 1 and 2
- Null hypothesis: F_{1} and F_{2} are the same distribution
- $H_{0}: F_{1}(z)=F_{2}(z), \forall z$
- Alternative hypothesis is different distributions
- $H_{1}: \exists$ zs.t. $F_{1}(z) \neq F_{2}(z)$

Permutation Vector and Lemma (2-Sample)

- Let $\boldsymbol{g}=\left(g_{1}, g_{2}, \ldots, g_{N}\right)$ be the permutation vector denoting which observation belongs to which population
- I.e., $g_{i}=1$ if $x_{i} \in$ population 1 and $g_{i}=-1$ otherwise
- \boldsymbol{g} contains $m \mathrm{X}$-group labels and $n \mathrm{Y}$-group labels
- g_{i} denotes group membership of x_{i}, where x_{i} is i-th observation for combined sample of N observations
- There are $\binom{N}{n}$ different possible values of the permutation vector
- Permutation Lemma:

Assuming the null-hypothesis $H_{0}: F_{1}(z)=F_{2}(z), \forall z$ is true, the vector \boldsymbol{g} is uniformly distributed on the $\binom{N}{n}=\frac{N!}{n!m!}$ possible values

Test statistic

- We compute the difference in the means

$$
T=\frac{1}{n} \sum_{i=1}^{n} x_{i}-\frac{1}{m} \sum_{i=1}^{m} y_{i}
$$

- For each of the $\binom{N}{n}$ possible permutation vectors we evaluate a similar quantity

$$
t_{j}=\frac{1}{n} \sum_{i \text { with label } X} z_{i}-\frac{1}{m} \sum_{i \text { with label } Y} z_{i}
$$

- To test H_{0} we evaluate how surprising the value T is with respect to the value obtained through the random permutations (their distribution)

Test procedure

- Fix critical control/confidence level α
- We sort the computed differences t_{j} increasingly
- If T falls in the middle $(1-\alpha)$ fraction of the values, then we fail to reject the null hypothesis
- Otherwise, if T is on the tails of the observed values, we reject H_{0} at significance level α
- The difference we observed in the populations is extreme enough to give us reason to reject the null hypothesis of the two distributions being the same

Problem

- When n, m are large, computing all of the t_{j} for all $\binom{N}{n}$ possible random permutation vectors is computationally expensive.
- Solution: use a randomized Monte Carlo approach!

Monte Carlo approximation

- Randomly sample B permutation vectors \boldsymbol{g}_{i}
- For each vector evaluate the statistic t_{i}
- We sort the computed differences
- If T falls in the middle $(1-\alpha)$ fraction of the B values, then we fail to reject the null hypothesis
- Otherwise, if T is on the tails of the observed values, we reject H_{0} at α significance level
- The difference we observed in the populations is extreme enough to give us reason not reject the hypothesis of the two distributions being the same
- How much should we sample?
- Not a clear answer
- For large n generally 1000, 2000 samples are used

The Rank-Sum Test (Mann-Whitney U test)

- Consider the samples

$$
\begin{aligned}
& -X_{1}=\{9.0,11.5,11.5,12.0,13.0,13.25\} \\
& -X_{2}=\{9.0,9.5,9.5,9.75,10.0,13.0\}
\end{aligned}
$$

- H_{0} : The mean of the two distributions is the same
- We start by ranking the observations according to their size relative to the whole sample
- If there are ties, we average the ranks

measurements	9.0	9.0	9.5	9.5	9.75	10.0	11.5	11.5	12.0	13.0	13.0	13.25
ranks	1	2	3	4	5	6	7	8	9	10	11	12
modified ranks	1.5	1.5	3.5	3.5	5	6	7.5	7.5	9	10.5	10.5	12

The Rank-Sum Test (Mann-Whitney U test)

- We compute:
- R_{1} by summing the ranks of the entries of the smaller sample
- R_{2} by summing the ranks of the entries of the larger sample
- H_{0} : The mean of the two distributions is the same
- If the null hypothesis is true, we would expect R1 and R2 to have similar value
- The U test statistic is computed as

$$
U=\min \left\{R_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2}, R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}\right\}
$$

- If there is a complete separation between the populations $\mathrm{U}=0$
- If the values are well interleaved, we would observe a higher values of U

The Rank-Sum Test (Mann-Whitney U test)

- Critical values are given for two-tailed test
- Rows and columns correspond to the sizes of the smaller and larger samples, respectively
- For every combination of row and column, there are two subrows:
- the top gives the critical values for confidence 10% (i.e., $\alpha=0.1$)
- bottom the 5% ones.
- For a one-sided test at 5\% use the relevant top entry.

The Rank-Sum Test (Mann-Whitney U test)

- For a given choice of n_{1}, n_{2}, α we get a value $u\left(n_{1}, n_{2}, \alpha\right)$
- If our computed test statistic $U \leq u\left(n_{1}, n_{2}, \alpha\right)$, we reject the null
- Otherwise we fail to reject the null

Larger Samples

- The table only goes up to large sample size 20
- For larger samples use normal approximation

$$
\begin{gathered}
z=\frac{\mathrm{U}-\mathrm{m}_{\mathrm{u}}}{\sigma_{U}} \\
\mathrm{~m}_{\mathrm{u}}=\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{2} \\
\sigma_{U}=\sqrt{\frac{\mathrm{n}_{1} \mathrm{n}_{2}\left(\mathrm{n}_{1}+\mathrm{n}_{2}+1\right)}{12}}
\end{gathered}
$$

- Then compare with the normal table
- E.g., for two-tailed test at 0.05 reject null if $|z|>1.96$.

Wilcoxon Signed-Rank Test for Paired Data

- Used to study the distribution of the difference of paired observations
- Let N be the sample size, thus $2 N$ data points in pairs
- $\left(x_{i, 1}, x_{i, 2}\right)$ denote the measurements
- Assumptions:
- Data are paired ($x_{i, 1}, x_{i, 2}$) and come from the same population
- Each pair is chosen uniformly and independently at random
- The data are measured on at least an interval scale when, as is usual, within-pair differences are calculated to perform the test

Testing procedure

- H_{0} : difference between the pairs follows a symmetric distribution around zero
- H_{1} : difference between the pairs does not follow a symmetric distribution around zero.

1. Calculate $d_{i}=\left|x_{2, i}-x_{1, i}\right|$ and $\operatorname{sgn}=\left(x_{2, i}-x_{1, i}\right)$
2. Exclude pairs for which $d_{i}=0$, and let N_{r} be the adjusted sample size
3. Rank the pairs according to increasing values for the d_{i} 's

- \quad Smallest d_{i} has rank 1
- Let R_{i} be the rank associated with d_{i}
- Ties are split by averaging the ranks

Testing procedure

4. Calculate the test statistic

$$
W=\sum_{i=1}^{N_{r}} \operatorname{sgn}\left(x_{2, i}-x_{1, i}\right) R_{i}
$$

Under the null hypothesis W follows the "W-distribution" with mean 0 and variance

$$
\frac{N_{r}\left(N_{r}+1\right)\left(2 N_{r}+1\right)}{6}
$$

5. Given a critical value α, we can obtain a corresponding value $W_{\alpha, N_{r}}$ using the opportune table
6. If $|W|>W_{\alpha, N_{r}}$ reject H_{0}

Example

- We consider a comparative study between different methods of preparing breasts for breastfeeding.
- Each mother treated one breast, leaving the other untreated.
- The following data gives the difference in the level of discomfort (1 to 4) between treated and untreated breast for a particular treatment.
- There are 19 measurements overall.
$-0.525,0.172,-0.577,0.200,0.040,-0.143,0.043,0.010,0.000,-0.522,0.007$, $-0.122,-0.040,0.000,-0.100,0.050,-0.575,0.031,-0.060$.

Example

- We rank the observations by absolute value after dropping the zero values

Diff	0.007	0.010	0.031	0.040	-0.040	0.043	0.050	-0.060	-0.100
Rank	1	2	3	4.5	4.5	6	7	8	9
Diff	-0.122	-0.143	0.172	0.200	-0.522	-0.525	-0.575	-0.577	
Rank	10	11	12	13	14	15	16	17	

- We thus have $W=48.5$

Example

n	$\mathrm{P}=0.10$	$\mathrm{P}=0.05$
5	2	-
6	2	0
7	3	2
8	5	3
9	8	5
10	10	8
11	14	10
12	17	13
13	21	17
14	26	21
15	30	25
16	36	29
17	41	34
18	47	40
19	53	46
20	60	52
21	67	58
22	75	65
23	83	73
24	91	81
25	100	89

- Since we dropped two values our sample size is 19-2=17
- Looking at the corresponding row we find the critical value of 34 at the 5% level
- To reject we would have to observe $\mathrm{T} \leq 34$.
- We fail to reject the null

Sample sizes

- For $N_{r}<20$ it is necessary to use the exact distribution (i.e. the table)
- As N_{r} increases the sampling distribution of W converges to a normal distribution
- z -score $\mathrm{z}=\frac{W}{\sigma_{W}}$, where $\sigma_{W}=\sqrt{\frac{N_{r}\left(N_{r}+1\right)\left(2 N_{r}+1\right)}{6}}$
- Given a critical confidence threshold α, we obtain the corresponding critical value z_{α} using opportune table
- Reject H_{0} if $|z|>z_{\alpha}$

How Would the t-test Do?

- Paired t-test:
- For every pair ($x_{1, i}, x_{2, i}$) compute the difference $d_{i}=$ $\left(x_{2, i}-x_{1, i}\right)$
- Just run the "standard" t-test on the d_{i} values!
- We would have $\bar{d}=-0.11, s_{d}=0.25$

$$
t=\sqrt{n} \frac{\bar{d}}{s_{d}}=-1.95
$$

- Given $\alpha=0.05$, we can obtain the corresponding threshold using the table
- For two-tailed test the threshold would be 2.10
- Since 2.10>-1.95 we would fail to reject H_{0}

Is the t-test Justified?

- Does the data look like it comes from a normal distribution? Let's look at the histogram.

