Lesson 2-6 Distributed BFS

Graphs and Adjacency Matrices
It is helpful to look at a graph as an adjacency matrix.

To do this:
1. Give each vertex an integer label.
2. Then create a matrix, A, to represent the graph. A row for every edge, and a column for
every vertex.
3. For each edge, put a ‘1’ in the corresponding row, column. For the vertex ‘0’, it has two
edges attached to it. One of the edges is going to vertex ‘1’ and the other to vertex ‘5’

Gﬁ?\r«s & Ao\éwoqv Mabnas Gaga, G

o [T | edae (i,) > Q=1 (“eue”)
Adjacency mokrix, A otwwise, =0 (“false”)

4. Undirected graphs have symmetric matrix. So put a ‘1’ in the corresponding columns.
vaphs § Adjaconcy Mabrias Undivected Gagh, G

o1 2 3 4 5 6 7 8

edge (i,9) > Q=1 (“erue”)
otwwise, =0 (“false”)

\dyncemncy woakrix, A
5. The final graph

Graghs § Adjacency Mabrias Undivected Gagh, G

0 1 2 3 4 5 6 7 8 =753""‘°*"'°‘aq=“51,orﬁ\‘/\f
o [E g e HoSRET

;

2

3

4

5

6

7

sl DL b0 Wl N eAge(i-,D*a;,i-:l('w')
Adiacemcu mokriv, A otlwwise, =0 (“false”)

For any undirected graph ‘G’,
Assume:
n = number of vertices
m = number of edges

Its adjacency matrix will be nxn.
The number of nonzeros: nnz(A) = 2m (# of nonzeros)

The Adjacency Matrix for a DIRECTED Graph

Arbitrarily number the graph.
Then record the OUTGOING edges of each vertex.

- M{L\l—in‘\hl\&jmm‘wkx.

Now treat the matrix as a boolean matrix:
1 = True, O=False

Quiz! Losing Your Diveckion What is the undirected graph for this directed

bt e graph?
i'tr;wz 5 The logical ‘or’ of B and its transpose.
—teabasey lolne (o 0 = Llee

Breadth-First Search: Review

Brandtu-Fiest Seavel : leview Level - synchvomous BFS(G: w,€),
Distama vechr, dL:] seV)

First: calculate the minimum distance of each vertex from ‘s’.
Let vertex ‘0’ be ‘s’.

‘s’ is 0 distance from itself, all other vertices are infinite distance from ‘s’.

Brend - Fiest Seavtln - loiew Level - synchomeus BFS(G= V€D,
Distunae veckor, 4] xaN)

0 1 2 3 5 [} 7 8

() |oo|oo|o® |00 |0t | 00 |ee |0

Level 820
Frontier Fl= 'f. DS

For level = 0, the Frontier F;= {0}. For each level, it is just the distance of the vertices from s.

So now we need to visit all of the frontiers neighbors, in this case the neighbors of the frontier
are vertices 1 and 5. Their distances are updated with the current distance + 1. (in this case 0 +
1=1)

These visited neighbors now become the new frontier. The level is 1, so update all neighbors to
distances 1+1 = 2.

Repeat for all nodes.
The final result:

Brand tu-Fist Sentln - Peview Level - synchronous BFS(G: (v, E),
seV)

Distanee veckor, 4]

i A b]

O|L|L]1%M|%12]3]5

Level 2= 4
Frontier Fl = i S

The cost of the algorithm is: O(m + n) n = vertices, m = edges

Matrix-based BFS

Now - translate the BFS algorithm into the language of Matrices.

ATVE T WDRGER Wt

Is there an edge from the frontier to i? If there is, the distance

il 0
@_ 7 o0 should be updated.
|-

If there is an edge from j — i, then the adjacency matrix

@ should have a ‘1’ (or true) at a;.

F-.l Consider the graph as a matrix A and the frontier as a
boolean vector ‘f.
To determine if there is an edge from i to the frontier, there needs to be an i at the
corresponding vertices. To record these edges, mark them in a boolean vector called ‘u’ (for
update).

Matrix - baged BFS £ A 0
DA
T AEY 111!

&7

s = (u ') ’l"' =
dV' 4y L= &5‘=‘.L true

Py

This can be said as:
Update i if any vertex j is in the frontier and points to i.

uli] & {/({1 A Qi
st

(V is logical ‘or’ and the up carrot is a logical ‘and’)

For a sparse graph, the vector and the matrix can be maintained with sparse data structures.
to go from the update vector to the updated distances,

el &
for-all Ui =1 amd d;= o0 do
A, < Ll
F'.:“t «— 1

MATRIX BASED BFS THE QUIZ

Matrix-baged BFS : The Quie! S
Ao cs e e [0 Y Lk Mk e adies 1NE €Xxample of filling in the update vector. Use

¥ @ Ty T of w Hat may wed pdetes, the the matrix-vector product.
2 ‘ { fd gven

| I LY | Recall: ue—Af

A YOOI O 00k

o [£TTLT AT
A

1-D Distributed BFS

The matrix gives you an easy way for distributing the BFS.

To do this:

Divide the number of columns into equal sections for each processor. The column partitioning

corresponds to the partitioning of the vertices.

1-D Dighvibuted BFS
o Wl 1 :’j‘ 3 4 5

1 [1

4] 7 8

11. » 1
o [il
3 : ‘1 11
-1‘v 1‘.

51 V
6 .1

1
1

8

1|
|
t
l 1
l
|
t
t

1
1

-

]
: |
|
|
l
}
. . . ‘ .
10 AT il
(
" :
u , \]

i

P=3

The Distributed 1-D Algorithm

ok wbd =~

partition columns of A and entries of u.
Computer u < A'f
Locally update the local distances
Identify local vertices of the next frontier
To an all-to-all exchange of the frontier

The update vector will be partitioned
to each process, but the frontier
vector will need to be replicated on
each process.

With each update, you will need to
replicate the frontier again.
Use all-to-all

The all-to-all is the only communication step, what is the cost?

The 1-D costs scale linearly. What is the cost when it is 2-D? Square root of p (p is the number

of processors).

